• UCSBgauchos twitter avatar
    Softball: Gauchos Split Final Road Games at Hawai'i https://t.co/CpEDdmmhVc
    8 hours 51 min ago
  • UCSBgauchos twitter avatar
    Gauchos are live on @ESPN3 ! WATCH >>> https://t.co/io6ZzYs9Hg https://t.co/BEO8wTxv62
    13 hours 58 min ago
  • ucsantabarbara twitter avatar
    Congrats to Leah Foltz for winning the #UCSB Grad Slam! Now she moves onto the UC-wide competition in SF on May 4th! https://t.co/kVqCtOTWb7
    20 hours 51 min ago
  • UCSBgauchos twitter avatar
    Former @UCSB_Baseball LHP Dom Mazza speaks with his hometown paper after throwing a perfecto this week! https://t.co/GPc3B3qL9g
    21 hours 11 min ago
  • ArtsandLectures twitter avatar
    Watch pianist #MurrayPerahia's breathtaking and imaginative performance, tonight at 7PM at UCSB Campbell Hall!… https://t.co/M83EeA6Y53
    23 hours 57 min ago
  • UCSBgauchos twitter avatar
    Softball: Hawai'i Tops UCSB 5-1 in Gauchos' Final Road Series Opener https://t.co/ejf0MWM1g0
    1 day 7 hours ago
  • UCSBgauchos twitter avatar
    Gauchos Sweep Past UCI 4-0 https://t.co/WFwbxDV8eA
    1 day 9 hours ago
  • ucsantabarbara twitter avatar
    We're happy to see you back, alumni! Don't miss the great events we have this weekend. #AllGauchoReunion… https://t.co/Sbz4iirr7i
    1 day 13 hours ago
  • UCSBgauchos twitter avatar
    Women's Tennis: Cal Poly 0, UC Santa Barb. 4 (Final) No.2 UCSB blanks No.7 Cal Poly in Big West Quarterfinal 4-0 https://t.co/m4kdACQFo5
    1 day 13 hours ago
  • UCSBgauchos twitter avatar
    .@UCSB_Baseball vs. UC Riverside on @ESPN3 is live now! Watch here >>> https://t.co/QJMvNLa0mQ
    1 day 13 hours ago
  • UCSBgauchos twitter avatar
    WWP: Defending Big West Champs Defeated by No. 12 LBSU in Another Overtime Match https://t.co/XIO3RJdo9p
    1 day 14 hours ago
  • UCSBgauchos twitter avatar
    Top-Seeded UCSB Set to Host Big West Golf Championship at Sandpiper GC https://t.co/SyXPKB2Ur5
    1 day 15 hours ago
  • UCSBLibrary twitter avatar
    RT @ForestSways: CEMA poster preservation for primary source research. #Chicanohertiage @Marikhasmanyan @UCSBLibrary #sca17 https://t.co/M…
    1 day 17 hours ago
  • UCSBLibrary twitter avatar
    @AmldavisAnn We're glad you're interested in using, please contact (805) 893-3062 or @library.ucsb.edu">special@library.ucsb.edu for m… https://t.co/fwAVOMoWyB
    1 day 17 hours ago
  • UCSB_GradPost twitter avatar
    CPT F-1 Visa workshop for international students on May 11 https://t.co/l6xZEndRVl #UCSB #ucsbgradpost
    1 day 18 hours ago

A New Cellular Frontier

Mechanical engineering professor Otger Campàs receives National Science Foundation Early Career Award
Wednesday, January 11, 2017 - 11:45
Santa Barbara, CA
Otger Campas's mechanobiology and tissue morphology research

Magnetic drop.jpg

magnetic drop

By exposing a magnetically responsive droplet (purple) to a magnetic field, the scientists are able to exert pressure on the surrounding embryonic cells in order to study their response to mechanical forces

Photo Credit: 

Courtesy Image

Drop3D_MesCells_stress_nobox (2).jpg

Image of 3D reconstruction of oil droplet

A 3D reconstruction of a droplet deformed by cellular forces. The colors on the droplet surface indicate the value of the forces at each point. The larger the force, the larger the droplet deformation

Photo Credit: 

Figure by Otger Campas

What if you could find another way to fight cancer by approaching it from an engineering perspective, acting on the cellular process by which tissues harden into tumors? Or how about circumventing a host of heart diseases by preventing, perhaps even reversing, the actual stiffening of cardiovascular tissue?

First you’d have to understand how cells sense and respond to their mechanical environment within tissues and tumors, processes that remain largely unknown — at least for the moment — according to UC Santa Barbara mechanical engineering professor Otger Campàs. For his efforts in developing tools to explore the little-known territory of the mechanical aspect of cellular development Campàs has received a National Science Foundation (NSF) Faculty Early Career Development (CAREER) Award.

“It’s an honor,” said Campàs, who holds the UCSB Mellichamp Endowed Chair in Systems Biology and Bioengineering. “I know very talented young scientists and engineers who have gotten this award, so it’s a privilege to become part of that group.”

The five-year, $500,000 award for “decoding the mechanical control of tissue growth” will assist Campàs and his team in gaining a better understanding of how cells perceive and respond to mechanical forces around them. That knowledge could, in turn, be tied back to the biochemical and genetic information cells exchange with each other, for an even clearer and more in-depth picture of how organisms grow and develop.

“You have millions of cells in your body; how do they know how to build a specific structure in a three-dimensional space?” he said. “This is actually what we’re trying to understand.” It’s a process that can’t be observed in petri dishes and test tubes, because genetics and biochemistry aside, developing cells rely also on mechanical forces in their natural 3D environment — that is, surrounded by other cells and tissue structures — to “decide” what to develop into.

“Cells also use their ‘sense of touch’ to sculpt organs into functional structures,” Campàs explained. But there was no tool to measure the tiny forces developing cells in the organism exert or perceive that take them on their developmental pathways toward the various cell types they become.

So he and his team made some. Using oil-based and also ferromagnetic microdroplets, the researchers devised ways to precisely apply and measure mechanical forces on cells in developing fish and mouse embryos, leading to the first cell-scale measurements of mechanics of tissue growth in living organisms.

“An organ is a ‘machine’ that performs specific functions,” Campàs said. All organs are three-dimensional structures whose functions are largely determined by their mechanical properties and their shapes, he explained. Finding out how the material sculpts itself into the machine will not only contribute to fundamental knowledge in biology, it could also provide valuable insight on anomalous conditions of cellular mechanics, such as the formation of tumors and fibroids, or the hardening of arteries and what mechanically causes those phenomena. This emerging perspective could eventually hasten or make more sophisticated treatments for the many and various diseases and symptoms associated with cellular mechanics.

The NSF’s Faculty Early Career Development (CAREER) program offers the organization’s most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations. Such activities are intended to build a firm foundation for a lifetime of leadership in integrating education and research.

Contact Info: 

Sonia Fernandez
(805) 893-4765