• UCSBgauchos twitter avatar
    Gauchos Sweep Past UCI 4-0 https://t.co/WFwbxDV8eA
    29 min 12 sec ago
  • ucsantabarbara twitter avatar
    We're happy to see you back, alumni! Don't miss the great events we have this weekend. #AllGauchoReunion… https://t.co/Sbz4iirr7i
    4 hours 6 min ago
  • UCSBgauchos twitter avatar
    Women's Tennis: Cal Poly 0, UC Santa Barb. 4 (Final) No.2 UCSB blanks No.7 Cal Poly in Big West Quarterfinal 4-0 https://t.co/m4kdACQFo5
    4 hours 9 min ago
  • UCSBgauchos twitter avatar
    .@UCSB_Baseball vs. UC Riverside on @ESPN3 is live now! Watch here >>> https://t.co/QJMvNLa0mQ
    4 hours 28 min ago
  • UCSBgauchos twitter avatar
    WWP: Defending Big West Champs Defeated by No. 12 LBSU in Another Overtime Match https://t.co/XIO3RJdo9p
    4 hours 46 min ago
  • UCSBgauchos twitter avatar
    Top-Seeded UCSB Set to Host Big West Golf Championship at Sandpiper GC https://t.co/SyXPKB2Ur5
    6 hours 21 min ago
  • UCSBLibrary twitter avatar
    RT @ForestSways: CEMA poster preservation for primary source research. #Chicanohertiage @Marikhasmanyan @UCSBLibrary #sca17 https://t.co/M…
    8 hours 22 min ago
  • UCSBLibrary twitter avatar
    @AmldavisAnn We're glad you're interested in using, please contact (805) 893-3062 or @library.ucsb.edu">special@library.ucsb.edu for m… https://t.co/fwAVOMoWyB
    8 hours 22 min ago
  • UCSB_GradPost twitter avatar
    CPT F-1 Visa workshop for international students on May 11 https://t.co/l6xZEndRVl #UCSB #ucsbgradpost
    8 hours 38 min ago
  • UCSB_GradPost twitter avatar
    Two open postdoc positions on Verification of Quantum Cryptography https://t.co/ZRA2iro7Ym #UCSB #ucsbgradpost
    8 hours 38 min ago
  • UCSB_GradPost twitter avatar
    Professor Micaela J. Díaz-Sánchez to speak about bomba on May 2 https://t.co/D4g84xVXkD #UCSB #ucsbgradpost
    8 hours 38 min ago
  • ArtsandLectures twitter avatar
    #DavidSedaris talks to the @SBIndpndnt about his new book Theft By Finding: "You might say he’s stolen our hearts."… https://t.co/fR3WFw02CL
    9 hours 33 min ago
  • brenucsb twitter avatar
    Is it possible to have negative GHG emissions? #UK launches national initiative to find negative emissions tech https://t.co/gHHHQHJLf1
    9 hours 35 min ago
  • UCSBengineering twitter avatar
    Photo gallery is up for our 50th Anniversary Alumni Reception! Can't wait to see everyone at 4pm #UCSBCOE50 https://t.co/d7TtlRJ2PM
    10 hours 1 min ago

Unraveling the Mystery of Stem Cells

Neuroscientists document some of the first steps in the process by which a stem cell transforms into different cell types
Thursday, March 24, 2016 - 09:00
Santa Barbara, CA

Kosik_FinalCELL_JPG.jpg

Primary cilia, depicted here as antennae, read the directional signals along the stem cell highway and determine whether human embryonic stem cells become precursors to neurons.

Photo Credit: 

illustration by Peter Allen

Jang and Kosik.jpg

Jiwon Jang and Kenneth S. Kosik

Jiwon Jang and Kenneth S. Kosik

Photo Credit: 

SONIA FERNANDEZ

How do neurons become neurons? They all begin as stem cells, undifferentiated and with the potential to become any cell in the body.

Until now, however, exactly how that happens has been somewhat of a scientific mystery. New research conducted by UC Santa Barbara neuroscientists has deciphered some of the earliest changes that occur before stems cells transform into neurons and other cell types.

Working with human embryonic stems cells in petri dishes, postdoctoral fellow Jiwon Jang discovered a new pathway that plays a key role in cell differentiation. The findings appear in the journal Cell.

“Jiwon’s discovery is very important because it gives us a fundamental understanding of the way stem cells work and the way they begin to undergo differentiation,” said senior author Kenneth S. Kosik, the Harriman Professor of Neuroscience Research in UCSB’s Department of Molecular, Cellular, and Developmental Biology. “It’s a very fundamental piece of knowledge that had been missing in the field.”

When stem cells begin to differentiate, they form precursors: neuroectoderms that have the potential to become brain cells, such as neurons; or mesendoderms, which ultimately become cells that comprise organs, muscles, blood and bone.

Jang discovered a number of steps along what he and Kosik labeled the PAN (Primary cilium, Autophagy Nrf2) axis. This newly identified pathway appears to determine a stem cell’s final form.

“The PAN axis is a very important player in cell fate decisions,” explained Jang. “G1 lengthening induces cilia protrusion and the longer those cellular antennae are exposed, the more signals they can pick up.”

For some time, scientists have known about Gap 1 (G1), the first of four phases in the cell cycle, but they weren’t clear about its role in stem cell differentiation. Jang’s research demonstrates that in stem cells destined to become neurons, the lengthening phase of G1 triggers other actions that cause stem cells to morph into neuroectoderms.

During this elongated G1 interval, cells develop primary cilia, antennalike protrusions capable of sensing their environment. The cilia activate the cells’ trash disposal system in a process known as autophagy.

Another important factor is Nrf2, which monitors cells for dangerous molecules such as free radicals — a particularly important job for healthy cell formation.

“Nrf2 is like a guardian to the cell and makes sure the cell is functioning properly,” said Kosik, co-director of the campus’s Neuroscience Research Institute. “Nrf2 levels are very high in stem cells because stem cells are the future. Without Nrf2 watching out for the integrity of the genome, future progeny are in trouble.”

Jang’s work showed that levels of Nrf2 begin to decline during the elongated G1 interval. This is significant, Kosik noted, because Nrf2 doesn’t usually diminish until the cell has already started to differentiate.

“We thought that, under the same conditions if the cells are identical, that both would differentiate the same way, but that is not what we found,” Jang said. “Cell fate is controlled by G1 lengthening, which extends cilia’s exposure to signals from their environment. That is one cool concept.”

Contact Info: 

Julie Cohen
(805) 893-7220
julie.cohen@ucsb.edu

Topics: