• ucsantabarbara twitter avatar
    The 19th Annual UC LEADS Research and Leadership Symposium brought together undergraduates from across the… https://t.co/1gfuDbw8xd
    4 hours 29 min ago
  • UCSBgauchos twitter avatar
    UCSB MVB became just the second team this year to take a lead on No. 1 and undefeated Long Beach State, but the Gau… https://t.co/faB34xJskD
    15 hours 31 min ago
  • UCSBgauchos twitter avatar
    Women's Tennis: Harvard at UC Santa Barb. (3/16/2018 2:00 PM EDT) Rain Day Leads to Cancellation of UCSB vs Harvard https://t.co/K0rSjkMka2
    16 hours 16 min ago
  • UCSBgauchos twitter avatar
    .@UCSB_Baseball opener vs. Sac St suspended due to rain. Gauchos and Hornets to play two tomorrow. https://t.co/JpJxFxXmbV
    20 hours 29 min ago
  • ucsantabarbara twitter avatar
    Here’s the problem: the bigger the parts in a satellite, the more expensive it is to build, launch, and operate. Lu… https://t.co/KLmIBg84Rb
    20 hours 30 min ago
  • ArtsandLectures twitter avatar
    Considered the world's greatest mezzo-soprano, @JoyceDiDonato entrances audiences across the globe with “a warmth i… https://t.co/L3YuZv7m88
    22 hours 10 min ago
  • brenucsb twitter avatar
    Protecting marine mammals, turtles, and birds by rebuilding global fisheries: #BrenUCSB and @sfgucsb post-docs rele… https://t.co/0HTXyi7Mjg
    22 hours 45 min ago
  • UCSBgauchos twitter avatar
    Logan Hotchkiss and Billy Mullis will represent @UCSBSwimming at the 2018 NCAA Division I Men's Swimming Championsh… https://t.co/e92apKJm4f
    1 day 1 hour ago
  • UCSBLibrary twitter avatar
    #deadweek means you'll have to wait just a bit longer to celebrate #worldsleepday. You're almost there, Gauchos!
    1 day 1 hour ago

At the Junction of Science and Engineering

Two postdoctoral fellows turn to bioengineering for studying biological and chemical signals and to image functions in living tissue
Wednesday, June 24, 2015 - 10:00
Santa Barbara, CA

Boyer and Arroyo.jpg

Scott Boyer and Netz Arroyo

Scott Boyer (left) and Netz Arroyo

Photo Credit: 

Sonia Fernandez

Science and engineering are like fraternal twins, separate and distinct but born of the same stuff. At the interface of these related disciplines new discoveries await.

Two UC Santa Barbara postdoctoral fellowships administered by the independent Santa Barbara Foundation support such cross-disciplinary research: The Otis Williams Postdoctoral Fellowship funds research at the interface of biology and engineering, while the Tri-Counties Blood Bank (TCBB) Postdoctoral Fellowship sponsors biomedical research related to blood and blood banking.

This year’s recipients, Netz Arroyo and Scott Boyer, are engaged in projects with seemingly endless potential.

Netz Arroyo

Working in Kevin Plaxco’s group in UCSB’s Department of Chemistry and Biochemistry, Arroyo, winner of the Williams fellowship, has redesigned an electrochemical sensor that measures conformational changes in biomolecules such as DNA, RNA and proteins when they react with target molecules present in blood samples. This has the potential to shed light on biological factors related to drug addiction.

Arroyo’s redesign incorporates a miniature membrane that eliminates interference from blood cells. “The sensors are working,” Arroyo said, “so the next step is to fully characterize the system to make sure it works every single time, then understand the pros and cons and from there go one step forward and begin experiments with animals.”

As the two-year project progresses, Arroyo will test these sensors in collaboration with the Tod Kippin’s lab in the Department of Psychological & Brain Sciences. The ultimate goal is to study pharmacokinetics — how the body processes and metabolizes a drug — by measuring the effects of drugs and neurotransmitters in the brain.

Tracking a drug should enable the researchers to measure the effects of the molecule in the cerebral environment. “If we can understand that and measure it quantitatively to a point where we know exactly what’s going on,” Arroyo explained, “then we can start addressing other questions about addiction and whether or not there is a predisposition to being an addict. We can ask chemical and behavioral questions: ‘How do changing drug levels drive changes in behavioral patterns?’ ‘What neurochemical relationships determine who becomes addicted and who does not?’ Starting to answer such questions is the dream goal of the project.”

Scott Boyer

In the lab of Anthony DeTomaso in UCSB’s Department of Molecular, Cellular and Developmental Biology, Boyer, winner of the TCBB fellowship, studies the vasculature of a model animal called Botryllus schlosseri. Boyer is seeking to better understand the pathways that translate physical changes into biochemical signals. Botryllus grows in colonies composed of many multicellular animals and has a massive, transparent vascular network located outside its collective body.

In addition to treating vascular cells with drugs to induce vascular regression and then imaging the shrinking tissue volume, Boyer also will conduct experiments to determine how mechanical forces translate into biochemical signals in living cells. He will use a magnetic bead system developed in Megan Valentine’s lab in UCSB’s Department of Mechanical Engineering.

“The environment here at UCSB is conducive to collaboration,” Boyer said. “People reach out and suggest working together, which has been very helpful.”

Another facet of the two-year Botryllus study will examine the effects of stiffness on the cells’ environment. “It’s thought that how squishy or how stiff the environment is helps tell the cell what it is,” said Boyer. He explained this concept in terms of stem cells. “For example, certain stem cells will become fat cells if the environment is soft. If the environment is stiffer, those same stem cell will become bone cells, or osteoblasts. The stiffness instructs the stem cells which path to choose.”

“Postdoctoral fellowships like these have two great benefits for science,” said Michael Witherell, UCSB’s vice chancellor for research. “They enable discoveries in areas of rapid scientific progress, and they give young researchers the chance to lead a research project in a very collaborative environment.”

Contact Info: 

Julie Cohen
(805) 893-7220