• UCSBgauchos twitter avatar
    Gilbertson Earns Big West Player of the Week Honor https://t.co/P0wmPtDjNT
    5 hours 45 min ago
  • ucsantabarbara twitter avatar
    When secrets are exposed, can life ever be the same? That question is at the heart of @ucsbTD's “Lydia." https://t.co/r1KKTmmB5N
    11 hours 22 min ago
  • ArtsandLectures twitter avatar
    RT @KCRWinSB: Extreme sports, mountain culture & exotic locations are a few highlights of the @BanffMtnFest. Don't miss it! https://t.co/sR…
    11 hours 23 min ago
  • ArtsandLectures twitter avatar
    .@DrSidMukherjee on the powerful documentary Cancer: The Emperor of All Maladies with @kenburns & @katiecouric https://t.co/p7pRHUrhGr
    11 hours 33 min ago
  • ArtsandLectures twitter avatar
    Fearless foodies, we're prepping for @AltonBrownLive with a giveaway! Find out how you can win #AltonBrown swag!… https://t.co/7xWh29cuct
    11 hours 49 min ago
  • UCSBgauchos twitter avatar
    WWP: Gauchos Begin Barbara Kalbus Invitational Against No. 8 Michigan https://t.co/p3U6s9Pswr
    12 hours 2 min ago
  • UCSB_GradPost twitter avatar
    Maria Vazquez on seeing the big picture and grad school life lessons https://t.co/8ghZtxLgvN #UCSB #ucsbgradpost
    13 hours 8 min ago
  • UCSBgauchos twitter avatar
    Gauchos Host Riverside in Final Home Game Thursday https://t.co/FPzQSdg2Ae
    13 hours 29 min ago
  • UCSBengineering twitter avatar
    Cryptographer Stefano Tessaro receives early career recognition from the Alfred P. Sloan Foundation https://t.co/iQi8qUA6uS
    13 hours 52 min ago
  • AS_UCSB twitter avatar
    Eager to make your mark on campus? Pop into our winter recruitment fair to learn how to get involved with your A.S.… https://t.co/Cp0VIE7bEq
    14 hours 13 min ago
  • brenucsb twitter avatar
    RT @CoraKammeyer: So cool to hear @GlobalEcoGuy speak at @brenucsb about the work @calacademy is doing to explore+explain+sustain our awe-i…
    15 hours 42 min ago
  • ArtsandLectures twitter avatar
    @mrjoshz @benshapiro oops, not an A&L event. Daily Nexus says it was put on by UCSB College Republicans: https://t.co/z8KDFjpXTv
    16 hours 21 min ago
  • brenucsb twitter avatar
    .@GlobalEcoGuy: Museums are the most trusted institutions in the nation w/ high approval ratings from Dems & Republicans alike #BrenTalks
    17 hours 18 min ago
  • ArtsandLectures twitter avatar
    Looking forward to another collaboration #theemperorofallmaladies #thegene https://t.co/BEzznCTSdN
    17 hours 20 min ago
  • brenucsb twitter avatar
    @GlobalEcoGuy: Museums serve ~ 1 billion visitors a year, more than all the sports stadiums & theme parks in the nation combined #BrenTalks
    17 hours 21 min ago

Illuminating the Dark Zone

UCSB scientists make new discoveries about a specific protein and its effects on the final step of cell division
Wednesday, April 29, 2015 - 09:30
Santa Barbara, CA

Ma and Bailey_HIGH.jpg

Zach Ma and Jeff Bailey

Zach Ma and Jeff Bailey

Photo Credit: 

SOnia Fernandez

The human body is a cross between a factory and a construction zone — at least on the cellular level. Certain proteins act as project managers, which direct a wide variety of processes and determine the fate of the cell as a whole.

One group of proteins called the WD-repeat (WDR) family helps a cell choose which of the thousands of possible gene products it should manufacture. These WDR proteins fold into a three-dimensional structure resembling a doughnut — an unusual shape that allows WDR proteins to act as stable platforms on which large protein complexes can assemble or disassemble.

A new study conducted by scientists at UC Santa Barbara reveals a novel function for WDR5, a protein known for its critical role in gene expression whereby information encoded in genes is converted into products like RNA (ribonucleic acid) and protein. In cells, WDR5 is a subunit of a five-protein complex. Mutations in members of this complex can result in childhood leukemia and other disorders affecting numerous organ systems in the body. The UCSB team worked with WDR5 in cultured human cell lines. The results of the study appear in the Journal of Biological Chemistry.

“We found that when two cells divide, WDR5 is localized to a very interesting cellular structure called the midbody,” said lead author Jeff Bailey, a graduate student in UCSB’s Department of Molecular, Cellular and Developmental Biology (MCDB). “In the past, although associated with cell division, the midbody was considered ‘junk,’ but that has changed in the last decade. Now the midbody is believed to be important during stem cell differentiation.”

When a stem cell divides to produce a differentiated type of cell like a skin cell or a neuron, stem cells retain the midbody while differentiated cells do not. “This suggests that the midbody has important functions,” Bailey explained. “Also, when the midbody isn’t cut correctly, the cells can re-fuse, creating one cell with two nuclei. This is thought to be part of what happens when a tumor forms.”

Conducted in the laboratory of MCDB associate professor Zach Ma, this new work involved the fusion of WDR5 to a green fluorescent protein molecule called EGFP.  Although dense material within the midbody thwarts conventional methods of protein detection, the fluorescence of EGFP tethered to WDR5 revealed its location during cell division, or cytokinesis.

The researchers were surprised to find WDR5 in a part of the midbody called the dark zone. “It was very unexpected,” Bailey said. “The presence of WDR5 outside the cell nucleus gave us a clue about its function, which we tested,” Ma added.

The scientists found that not only did the protein localize in the midbody, it also contributed to abscission, the separation of two daughter cells at the completion of cytokinesis. In addition, WDR5 promotes the disassembly of midbody microtubules, the major structural components of the midbody that must be cleared before abscission can occur.

When the investigators artificially reduced the amount of WDR5 in cells, cytokinesis was substantially delayed and more cells failed to divide properly. “When histology is performed on a tumor, pathologists look for cells that have two nuclei,” Bailey explained. “This can indicate that cells within the tumor are failing to properly finish cytokinesis.”

Because a single protein can perform several distinct functions according to its location within a cell, it can be challenging to study one function without disrupting the others. Guided by previous structural studies, however, the UCSB team identified surfaces of the WDR5 “doughnut” that may be specific to its role in cell division.

“We have shed some light on the role of WDR5 in cytokinesis,” Ma said, “which may in turn help us better understand the diverse array of physiological as well as pathological events related to malfunction of these proteins in the process of cell division.”

Contact Info: 

Julie Cohen
julie.cohen@ucsb.edu
(805) 893-7220

Topics: