• UCSBgauchos twitter avatar
    Softball: Gauchos Split Final Road Games at Hawai'i https://t.co/CpEDdmmhVc
    8 hours 58 min ago
  • UCSBgauchos twitter avatar
    Gauchos are live on @ESPN3 ! WATCH >>> https://t.co/io6ZzYs9Hg https://t.co/BEO8wTxv62
    14 hours 5 min ago
  • ucsantabarbara twitter avatar
    Congrats to Leah Foltz for winning the #UCSB Grad Slam! Now she moves onto the UC-wide competition in SF on May 4th! https://t.co/kVqCtOTWb7
    20 hours 59 min ago
  • UCSBgauchos twitter avatar
    Former @UCSB_Baseball LHP Dom Mazza speaks with his hometown paper after throwing a perfecto this week! https://t.co/GPc3B3qL9g
    21 hours 19 min ago
  • ArtsandLectures twitter avatar
    Watch pianist #MurrayPerahia's breathtaking and imaginative performance, tonight at 7PM at UCSB Campbell Hall!… https://t.co/M83EeA6Y53
    1 day 4 min ago
  • UCSBgauchos twitter avatar
    Softball: Hawai'i Tops UCSB 5-1 in Gauchos' Final Road Series Opener https://t.co/ejf0MWM1g0
    1 day 7 hours ago
  • UCSBgauchos twitter avatar
    Gauchos Sweep Past UCI 4-0 https://t.co/WFwbxDV8eA
    1 day 10 hours ago
  • ucsantabarbara twitter avatar
    We're happy to see you back, alumni! Don't miss the great events we have this weekend. #AllGauchoReunion… https://t.co/Sbz4iirr7i
    1 day 13 hours ago
  • UCSBgauchos twitter avatar
    Women's Tennis: Cal Poly 0, UC Santa Barb. 4 (Final) No.2 UCSB blanks No.7 Cal Poly in Big West Quarterfinal 4-0 https://t.co/m4kdACQFo5
    1 day 13 hours ago
  • UCSBgauchos twitter avatar
    .@UCSB_Baseball vs. UC Riverside on @ESPN3 is live now! Watch here >>> https://t.co/QJMvNLa0mQ
    1 day 14 hours ago
  • UCSBgauchos twitter avatar
    WWP: Defending Big West Champs Defeated by No. 12 LBSU in Another Overtime Match https://t.co/XIO3RJdo9p
    1 day 14 hours ago
  • UCSBgauchos twitter avatar
    Top-Seeded UCSB Set to Host Big West Golf Championship at Sandpiper GC https://t.co/SyXPKB2Ur5
    1 day 15 hours ago
  • UCSBLibrary twitter avatar
    RT @ForestSways: CEMA poster preservation for primary source research. #Chicanohertiage @Marikhasmanyan @UCSBLibrary #sca17 https://t.co/M…
    1 day 17 hours ago
  • UCSBLibrary twitter avatar
    @AmldavisAnn We're glad you're interested in using, please contact (805) 893-3062 or @library.ucsb.edu">special@library.ucsb.edu for m… https://t.co/fwAVOMoWyB
    1 day 17 hours ago
  • UCSB_GradPost twitter avatar
    CPT F-1 Visa workshop for international students on May 11 https://t.co/l6xZEndRVl #UCSB #ucsbgradpost
    1 day 18 hours ago

The Physics of Clouds

A UCSB physicist’s experimental results disprove long-held ideas about turbulence
Wednesday, March 11, 2015 - 09:30
Santa Barbara, CA

greatlakes_cloudstreets_HIGH.jpg

Cloud streets

Cloud streets — long rows of cumulus clouds oriented parallel to the direction of the wind — are an everyday example of natural turbulent convection.

Photo Credit: 

MODIS Rapid Response Team at NASA GSFC

Ahlers and Wei.jpg

Ahlers and Wei

UCSB physics professor Guenter Ahlers and his postdoctoral co-worker Ping Wei. 

Photo Credit: 

SONIA FERNANDEZ

In 1941, Russian physicist Andrey Kolmogorov developed a theory of turbulence that has served as the basic foundation for our understanding of this important naturally occurring phenomenon.

Turbulence occurs when fluid flow is characterized by chaotic physical changes. Kolmogorov’s theory has been interpreted to imply that transitions from one state of turbulence to another must be a smooth evolution because very intense fluctuations that are part of the process itself would smooth out anything sharp.

Now, however, a new experiment conducted by physicists at UC Santa Barbara disproves this interpretation of Kolmogorov’s theory. Their results appear in the journal Physical Review Letters.

“In our paper we offer experimental evidence that these transitions are indeed sharp,” said Guenter Ahlers, a professor in UCSB’s Department of Physics. “We have been enlightened by these data and they have shown us that the interpretation of Kolmogorov was incorrect. To a physicist that is a very important step forward.”

Ahlers and his postdoctoral co-workers Ping Wei and Stephan Weiss study turbulent convection, which plays a major role in numerous natural and industrial processes. Turbulent convection results when a contained fluid is heated from below and cooled from above. As the temperature differential increases, the convective flow becomes so vigorous that the velocity field becomes turbulent.

Using a cylindrical rotating system built by Ahlers’ team, the researchers heated the fluid from the bottom so it expanded and became less dense than the liquid at the top. Earth’s gravity caused the liquids to change positions with each other, which in turn created turbulence. Then the scientists added rotation.

“When you rotate, you get new forces acting, including the Coriolis Force — a product of the Earth’s rotation as well as of rotation in the laboratory — which spins the liquid into little vortices or tornadoes,” explained Ahlers.

“So the system is full of little tornadoes near the heating plate and also near the top — only there, they are cold tornadoes,” Ahlers added. “At first, these tornadoes are not connected because they are relatively short. But as you rotate the cylinder faster and faster, the tornadoes extend and eventually form columns over this whole system. When that happens, physicists say that the symmetry of the system changes.”

The next step for Ahlers and his team was to measure the heat transport — the exchange of thermal energy — which is expressed by the Nusselt number. Wilhelm Nusselt was a German engineer in the early 1900s who measured the heat transport through double window panes.

“If you look at the Nusselt number, it has these breaks, which indicates that the heat transport does not change smoothly as the rotation rate is increased,” Ahlers said. “By the way, Lev Landau told us that a long time ago. And while Landau wasn’t talking about turbulent systems, his arguments can be directly carried over to the turbulence state.”

Ahlers was referring to another Russian physicist, and a Nobel laureate, who theorized that when the symmetry of a system changes, the change must be sharp. It cannot be smooth because a system has only two states: disordered or ordered and there is nothing in between.

“The trouble is that people in turbulence never thought about Landau because he was in a completely different field and the information doesn’t get carried across because there’s just too much of it,” Ahlers added. “But I worked in the field of critical phenomena for many, many years and know Landau’s work very well. Then I changed to studying turbulence, and when this issue popped up, it was obvious to me what was going on.”

In the paper, the researchers use cloud streets — long rows of cumulus clouds oriented parallel to the direction of the wind — as an everyday example of natural turbulent convection. These flat-bottomed, fluffy-topped clouds are formed when cold air blows over warmer waters and a warmer air layer (temperature inversion) rests over the top of both.

As the comparatively warm water gives up heat and moisture to the cold air above, columns of heated air called thermals naturally rise through the atmosphere. When the rising thermals hit the warm air layer, they roll over and loop back on themselves, creating parallel cylinders of rotating air that act similarly to the fluid in Ahlers’ cylindrical rotating system. While the process sounds smooth, Ahlers’ latest experiment proves that it is anything but.

Contact Info: 

Julie Cohen
julie.cohen@ucsb.edu
(805) 893-7220

Topics: