• ArtsandLectures twitter avatar
    KCRW DJ Raul Campos is doing the killer music set right now at the Courthouse! Bogie and Bacall. #kcrw https://t.co/Lw9PHUGugS
    1 hour 10 min ago
  • ArtsandLectures twitter avatar
    75 minutes until showtime. Bogie and Bacall in THE BIG SLEEP. #sbsummercinema https://t.co/21aRG3Gbmc
    1 hour 14 min ago
  • ArtsandLectures twitter avatar
    KCRW DJ Raul Campos is spinning the tunes NOW at the Courthouse!! THE BIG SLEEP at 8:30. Be here!! https://t.co/7DkUeAP1BP
    1 hour 18 min ago
  • ucsantabarbara twitter avatar
    Scholars from diverse backgrounds gathered at #UCSB to examine how people with widely differing beliefs can coexist. https://t.co/Gp9UoEVX2s
    1 hour 54 min ago
  • brenucsb twitter avatar
    https://t.co/9fc8f6UgIp
    3 hours 19 min ago
  • ArtsandLectures twitter avatar
    Do not go gentle into that good night, see @KCRW DJ @raulcampos spin tonight at the Courthouse before The Big Sleep! https://t.co/kgLcgFxpT4
    3 hours 57 min ago
  • UCSBLibrary twitter avatar
    James Alan McPherson, 1st black writer to win Pulitzer Prize for fiction, died Wednesday. https://t.co/6j5gngFtFq https://t.co/nXeefjDzNy
    8 hours 31 min ago
  • UCSBengineering twitter avatar
    RT @Sowjumn: If you r a Gaucho and u work in tech or want 2 have a career in tech do follow @gauchosintech 4 news abt events, jobs & networ…
    9 hours 5 min ago

Ocean Food Web Key in Global Carbon Cycle

A new study by a UCSB oceanographer uses satellite observations to assess the role of the biological pump in global ocean carbon export
Tuesday, March 11, 2014 - 09:30
Santa Barbara, CA

Nothing dies of old age in the ocean. Everything gets eaten and all that remains of anything is waste. But that waste is pure gold to oceanographer David Siegel, director of the Earth Research Institute at UC Santa Barbara.

In a study of the ocean’s role in the global carbon cycle, Siegel and his colleagues used those nuggets to their advantage. They incorporated the lifecycle of phytoplankton and zooplankton — small, often microscopic animals at the bottom of the food chain — into a novel mechanistic model for assessing the global ocean carbon export. Their findings appear online in the journal Global Biogeochemical Cycles.

The researchers used satellite observations including determinations of net primary production (NPP) — the net production of organic matter from aqueous carbon dioxide (CO2) by phytoplankton — to drive their food-web-based model. The scientists focused on the ocean’s biological pump, which exports organic carbon from the euphotic zone — the well-lit, upper ocean — through sinking particulate matter, largely from zooplankton feces and aggregates of algae. Once these leave the euphotic zone, sinking into the ocean depths, the carbon can be sequestered for a season or for centuries.

“What we’ve done here is create the first step toward monitoring the strength and efficiency of the biological pump using satellite observations,” said Siegel, who is also a professor of marine science in UCSB’s Department of Geography. “The approach is unique in that previous ways have been empirical without considering the dynamics of the ocean food web.” The space/time patterns created by those empirical approaches are inconsistent with how oceanographers think the oceans should work, he noted.

Carbon is present in the atmosphere and is stored in soils, oceans and the Earth’s crust. Any movement of carbon between — or in the case of the ocean, within — these reservoirs is called a flux. According to the researchers, oceans are a central component in the global carbon cycle through their storage, transport and transformations of carbon constituents.

“Quantifying this carbon flux is critical for predicting the atmosphere’s response to changing climates,” Siegel said. “By analyzing the scattering signals that we got from satellite measurements of the ocean’s color, we were able to develop techniques to calculate how much of the biomass occurs in very large or very small particles.”

Their results predict a mean global carbon export flux of 6 petagrams (Pg) per year. Also known as a gigaton, a petagram is equal to one quadrillion (1015) grams. This is a huge amount, roughly equivalent to the annual global emissions of fossil fuel. At present, fossil fuel combustion represents a flux to the atmosphere of approximately 9 Pg per year.

“It matters how big and small the plankton are, and it matters what the energy flows are in the food web,” Siegel said. “This is so simple. It’s really who eats whom but also having an idea of the biomasses and productivity of each. So we worked out these advanced ways of determining NPP, phytoplankton biomass and the size structure to formulate mass budgets, all derived from satellite data.”

The researchers are taking their model one step further by planning a major field program designed to better understand the states in which the biological pump operates. “Understanding the biological pump is critical,” Siegel concluded. “We need to understand where carbon goes, how much of it goes into the organic matter, how that affects the air-sea exchanges of CO2 and what happens to fossil fuel we have emitted from our tailpipes.”

This research was funded by the NASA Ocean Biology and Biogeochemistry program. 

Contact Info: 

Julie Cohen
julie.cohen@ucsb.edu
(805) 893-7220

Topics: