• ucsantabarbara twitter avatar
    Reminder: updates about the impacts of the #ThomasFire on campus operations are posted on The #UCSB Current: https://t.co/Hmm6PkVoi3
    8 hours 28 min ago
  • UCSBLibrary twitter avatar
    #UCSB Library will be closing tonight at midnight. We will reopen tomorrow at 8AM. Recess hours will be in effect M… https://t.co/fom6hAvC09
    12 hours 45 min ago
  • ucsantabarbara twitter avatar
    ICYMI: #UCSB fall quarter final exams have been rescheduled for the week of January 8th. For answers to FAQs relate… https://t.co/v0dklvXDS0
    13 hours 20 min ago
  • UCSB_GradPost twitter avatar
    Resources and updates for Thomas Fire https://t.co/YDATGJf7rb #UCSB #ucsbgradpost
    14 hours 52 min ago
  • UCSBengineering twitter avatar
    RT @ucsantabarbara: Final exams scheduled for the coming week will be rescheduled for the week of January 8. #UCSB students who wish to lea…
    15 hours 8 min ago
  • ucsantabarbara twitter avatar
    Updates from Chancellor Yang's latest memo (4 of 4). The campus will remain open. Student housing, including reside… https://t.co/IkKUjg1Png
    16 hours 6 min ago
  • ucsantabarbara twitter avatar
    Updates from Chancellor Yang's latest memo (3 of 4). The revised final exam schedule will be posted on the Office o… https://t.co/K1gbw5KUXZ
    16 hours 7 min ago
  • ucsantabarbara twitter avatar
    Updates from Chancellor Yang's latest memo (2 of 4). Fall quarter has been extended. Winter quarter will now begin… https://t.co/88DzDNIcBv
    16 hours 9 min ago
  • ucsantabarbara twitter avatar
    Updates from Chancellor Yang's latest memo (1 of 4). Final exams scheduled for the coming week will be rescheduled… https://t.co/Yh3W3Jcmjo
    16 hours 10 min ago
  • UCSBLibrary twitter avatar
    The Library remains open for students that need a place to gather and/or begin making alternative plans for the now… https://t.co/S0TalpXviJ
    16 hours 28 min ago
  • ucsantabarbara twitter avatar
    Final exams scheduled for the coming week will be rescheduled for the week of January 8. #UCSB students who wish to… https://t.co/goWRKavefr
    16 hours 31 min ago
  • UCSBLibrary twitter avatar
    RT @UCSBHousing: Message from #UCSB Chancellor Yang re: #ThomasFire https://t.co/cffzAyhOaV
    16 hours 38 min ago
  • brenucsb twitter avatar
    Cape Code fishermen bring sustainably harvested, 'under-loved' #fish to New England Diners https://t.co/ZcHLoUKMHP https://t.co/vqGUmOqu7X
    17 hours 49 min ago
  • UCSBLibrary twitter avatar
    RT @UCSBETS: All #UCSB campus networking has been working properly for at least 30 minutes, and the vast majority has been working for an h…
    19 hours 38 min ago
  • UCSBLibrary twitter avatar
    The #UCSB Library remains open. With ongoing power outages all elevators, with the exception of the elevator near t… https://t.co/JKKgCPw4BY
    19 hours 44 min ago

Ocean Food Web Key in Global Carbon Cycle

A new study by a UCSB oceanographer uses satellite observations to assess the role of the biological pump in global ocean carbon export
Tuesday, March 11, 2014 - 09:30
Santa Barbara, CA

Nothing dies of old age in the ocean. Everything gets eaten and all that remains of anything is waste. But that waste is pure gold to oceanographer David Siegel, director of the Earth Research Institute at UC Santa Barbara.

In a study of the ocean’s role in the global carbon cycle, Siegel and his colleagues used those nuggets to their advantage. They incorporated the lifecycle of phytoplankton and zooplankton — small, often microscopic animals at the bottom of the food chain — into a novel mechanistic model for assessing the global ocean carbon export. Their findings appear online in the journal Global Biogeochemical Cycles.

The researchers used satellite observations including determinations of net primary production (NPP) — the net production of organic matter from aqueous carbon dioxide (CO2) by phytoplankton — to drive their food-web-based model. The scientists focused on the ocean’s biological pump, which exports organic carbon from the euphotic zone — the well-lit, upper ocean — through sinking particulate matter, largely from zooplankton feces and aggregates of algae. Once these leave the euphotic zone, sinking into the ocean depths, the carbon can be sequestered for a season or for centuries.

“What we’ve done here is create the first step toward monitoring the strength and efficiency of the biological pump using satellite observations,” said Siegel, who is also a professor of marine science in UCSB’s Department of Geography. “The approach is unique in that previous ways have been empirical without considering the dynamics of the ocean food web.” The space/time patterns created by those empirical approaches are inconsistent with how oceanographers think the oceans should work, he noted.

Carbon is present in the atmosphere and is stored in soils, oceans and the Earth’s crust. Any movement of carbon between — or in the case of the ocean, within — these reservoirs is called a flux. According to the researchers, oceans are a central component in the global carbon cycle through their storage, transport and transformations of carbon constituents.

“Quantifying this carbon flux is critical for predicting the atmosphere’s response to changing climates,” Siegel said. “By analyzing the scattering signals that we got from satellite measurements of the ocean’s color, we were able to develop techniques to calculate how much of the biomass occurs in very large or very small particles.”

Their results predict a mean global carbon export flux of 6 petagrams (Pg) per year. Also known as a gigaton, a petagram is equal to one quadrillion (1015) grams. This is a huge amount, roughly equivalent to the annual global emissions of fossil fuel. At present, fossil fuel combustion represents a flux to the atmosphere of approximately 9 Pg per year.

“It matters how big and small the plankton are, and it matters what the energy flows are in the food web,” Siegel said. “This is so simple. It’s really who eats whom but also having an idea of the biomasses and productivity of each. So we worked out these advanced ways of determining NPP, phytoplankton biomass and the size structure to formulate mass budgets, all derived from satellite data.”

The researchers are taking their model one step further by planning a major field program designed to better understand the states in which the biological pump operates. “Understanding the biological pump is critical,” Siegel concluded. “We need to understand where carbon goes, how much of it goes into the organic matter, how that affects the air-sea exchanges of CO2 and what happens to fossil fuel we have emitted from our tailpipes.”

This research was funded by the NASA Ocean Biology and Biogeochemistry program. 

Contact Info: 

Julie Cohen
julie.cohen@ucsb.edu
(805) 893-7220

Topics: