• UCSBgauchos twitter avatar
    Revamped Gauchos Win Back-to-Back Matches in Home Doubleheader https://t.co/jhnkYqqbPZ
    5 hours 1 min ago
  • UCSBgauchos twitter avatar
    .@UCSB_Baseball pitching staff combines to allow just one ER on Saturday, but Gauchos were narrowly edged out 2-1 b… https://t.co/XXMPf7zJMt
    7 hours 3 min ago
  • UCSBgauchos twitter avatar
    https://t.co/KqzqgGnFPM https://t.co/5Eb29pejx5
    7 hours 17 min ago
  • UCSBgauchos twitter avatar
    No. 17 UCSB Splits the Day with Win, Loss in Barbara Kalbus Invitational https://t.co/FjOu7m7yVi
    7 hours 36 min ago
  • UCSBgauchos twitter avatar
    Sweet Senior Night for UCSB After Thrilling Comeback Victory https://t.co/JvMB1rM2PU
    7 hours 36 min ago
  • UCSBgauchos twitter avatar
    https://t.co/MDKMoaJ0S9 https://t.co/q86tSC4ix0
    8 hours 23 min ago
  • UCSBgauchos twitter avatar
    https://t.co/7jIxHyvaT4 https://t.co/I1ZzkaW5oM
    8 hours 24 min ago
  • UCSBgauchos twitter avatar
    King Leads the Way as Gauchos Bounce Back at CSUN, 82-73 https://t.co/xetzeO9GgK
    8 hours 24 min ago
  • UCSBgauchos twitter avatar
    Walk-Off Win Highlights Day Three of Gaucho Classic I https://t.co/YVRwLO1AYO
    8 hours 31 min ago
  • UCSBgauchos twitter avatar
    Gauchos Drop 5-2 Decision Against No. 40 Utah https://t.co/UG0MH8Q465
    9 hours 10 min ago
  • ArtsandLectures twitter avatar
    In a unique evening of Chinese culture, the brilliant pipa master @wumanpipa and #HuayinShadowPuppetBand will perfo… https://t.co/vQVQPQYGp2
    11 hours 3 min ago
  • ArtsandLectures twitter avatar
    RT @sbseasons: Banff Mountain Film Festival World Tour's 27th year in Santa Barbara 2/27-28 https://t.co/fmdyBe2Uxj @sbseasons #SBFilm @Art
    13 hours 21 min ago
  • ArtsandLectures twitter avatar
    RT @carmenmccain: This week, I went to hear #MatthewDesmond @just_shelter speak at UCSB @ArtsandLectures on how evictions are behind much o…
    13 hours 21 min ago
  • ArtsandLectures twitter avatar
    @SRodgerBock @AstroTerry @NatGeoLive @NatGeoBooks @NatGeoPR We’ll have copies for sale at the event through… https://t.co/HLBciQPq9t
    13 hours 21 min ago
  • ucsantabarbara twitter avatar
    RT @jbk14mv10: Saving a wetlands preserve from invasive weeds...pretty nice little Saturday...#GauchosGiveBack https://t.co/TaqsCjx8V3
    15 hours 27 min ago

Ocean Food Web Key in Global Carbon Cycle

A new study by a UCSB oceanographer uses satellite observations to assess the role of the biological pump in global ocean carbon export
Tuesday, March 11, 2014 - 09:30
Santa Barbara, CA

Nothing dies of old age in the ocean. Everything gets eaten and all that remains of anything is waste. But that waste is pure gold to oceanographer David Siegel, director of the Earth Research Institute at UC Santa Barbara.

In a study of the ocean’s role in the global carbon cycle, Siegel and his colleagues used those nuggets to their advantage. They incorporated the lifecycle of phytoplankton and zooplankton — small, often microscopic animals at the bottom of the food chain — into a novel mechanistic model for assessing the global ocean carbon export. Their findings appear online in the journal Global Biogeochemical Cycles.

The researchers used satellite observations including determinations of net primary production (NPP) — the net production of organic matter from aqueous carbon dioxide (CO2) by phytoplankton — to drive their food-web-based model. The scientists focused on the ocean’s biological pump, which exports organic carbon from the euphotic zone — the well-lit, upper ocean — through sinking particulate matter, largely from zooplankton feces and aggregates of algae. Once these leave the euphotic zone, sinking into the ocean depths, the carbon can be sequestered for a season or for centuries.

“What we’ve done here is create the first step toward monitoring the strength and efficiency of the biological pump using satellite observations,” said Siegel, who is also a professor of marine science in UCSB’s Department of Geography. “The approach is unique in that previous ways have been empirical without considering the dynamics of the ocean food web.” The space/time patterns created by those empirical approaches are inconsistent with how oceanographers think the oceans should work, he noted.

Carbon is present in the atmosphere and is stored in soils, oceans and the Earth’s crust. Any movement of carbon between — or in the case of the ocean, within — these reservoirs is called a flux. According to the researchers, oceans are a central component in the global carbon cycle through their storage, transport and transformations of carbon constituents.

“Quantifying this carbon flux is critical for predicting the atmosphere’s response to changing climates,” Siegel said. “By analyzing the scattering signals that we got from satellite measurements of the ocean’s color, we were able to develop techniques to calculate how much of the biomass occurs in very large or very small particles.”

Their results predict a mean global carbon export flux of 6 petagrams (Pg) per year. Also known as a gigaton, a petagram is equal to one quadrillion (1015) grams. This is a huge amount, roughly equivalent to the annual global emissions of fossil fuel. At present, fossil fuel combustion represents a flux to the atmosphere of approximately 9 Pg per year.

“It matters how big and small the plankton are, and it matters what the energy flows are in the food web,” Siegel said. “This is so simple. It’s really who eats whom but also having an idea of the biomasses and productivity of each. So we worked out these advanced ways of determining NPP, phytoplankton biomass and the size structure to formulate mass budgets, all derived from satellite data.”

The researchers are taking their model one step further by planning a major field program designed to better understand the states in which the biological pump operates. “Understanding the biological pump is critical,” Siegel concluded. “We need to understand where carbon goes, how much of it goes into the organic matter, how that affects the air-sea exchanges of CO2 and what happens to fossil fuel we have emitted from our tailpipes.”

This research was funded by the NASA Ocean Biology and Biogeochemistry program. 

Contact Info: 

Julie Cohen
julie.cohen@ucsb.edu
(805) 893-7220

Topics: