• UCSBgauchos twitter avatar
    Will the Gauchos climb in rankings after upsetting No. 5 Stanford 7-6? https://t.co/GhYPn3tee4
    57 min 39 sec ago
  • brenucsb twitter avatar
    Attention environmental problem solvers! #BrenUCSB is accepting MESM and PhD applications for Fall 2017. Learn more https://t.co/G4NB6n0Ne4
    2 hours 20 min ago
  • ucsantabarbara twitter avatar
    Congrats to #UCSB physicist Andrea Young for receiving a 2016 Fellowship to pursue his studies! https://t.co/U0VRrjpcVo
    2 hours 51 min ago
  • UCSBgauchos twitter avatar
    WVB: Gauchos Bounce Back, Defeat CSUN 3-1 on Alumni Night https://t.co/FojzbAmgtC
    12 hours 53 min ago
  • UCSBgauchos twitter avatar
    .@UCSBMensSoccer has to settle for draw over rival Cal Poly in front of season-high crowd. RECAP >>>… https://t.co/SWgs9zjRSJ
    13 hours 40 min ago
  • UCSBgauchos twitter avatar
    Attention UCSB fans, https://t.co/DWr6IUf6ek have live stream of postgame presser w/ Tim Vom Steeg. Listen here >>> https://t.co/ERE7yxUmyI
    16 hours 10 min ago
  • UCSBgauchos twitter avatar
    No. 7 UCSB Deal Thrilling Upset to No. 5 Stanford 7-6 https://t.co/cqiTDXJPRn
    19 hours 11 min ago
  • AS_UCSB twitter avatar
    Good luck to @UCSBMensSoccer today taking on the bad guys Cal Poly. Let's get it! #GauchoStrong
    20 hours 13 min ago
  • brenucsb twitter avatar
    What's it like to study at #BrenUCSB? See these students' stories to find out: https://t.co/A0sE88SEwV
    1 day 2 hours ago
  • UCSBgauchos twitter avatar
    Gauchos Push First Place Long Beach St. to the Brink, Fall Just Short in Five https://t.co/7FHfqLwpBh
    1 day 14 hours ago
  • ArtsandLectures twitter avatar
    .@MairaKalman's Illustrated Life: Legendary Author/Artists Extols the Beauty of Not Knowing:… https://t.co/BCa6uiIN7D
    1 day 19 hours ago
  • ArtsandLectures twitter avatar
    ICYMI: check out @marcmaron's interview with the @SBIndpndnt, then catch his #TooRealTour tonight at 8PM at #UCSB C… https://t.co/aetI8cgbVH
    1 day 19 hours ago
  • ArtsandLectures twitter avatar
    RT @SBIndpndnt: Jookin’ Master Lil Buck Performs at UCSB: Director Damian Woetzel Speaks on Buck’s One-Of-A-Kind Talents https://t.co/4wmEF…
    1 day 19 hours ago
  • ArtsandLectures twitter avatar
    RT @vivaelartesb: Yplotecuani tonight free at Isla Vista School 7 pm https://t.co/otwn99ENg2
    1 day 19 hours ago
  • ArtsandLectures twitter avatar
    RT @StationCDRKelly: Great day on #Earth! Met @POTUS at the @WhiteHouse w @ShuttleCDRKelly today and talked about the environment and our #…
    1 day 20 hours ago

Research into Carbon Storage in Arctic Tundra Reveals Unexpected Insight into Ecosystem Resiliency

Thursday, May 16, 2013 - 17:00
Santa Barbara, CA

When UC Santa Barbara doctoral student Seeta Sistla and her adviser, environmental studies professor Josh Schimel, went north not long ago to study how long-term warming in the Arctic affects carbon storage, they had made certain assumptions.

"We expected that because of the long-term warming, we would have lost carbon stored in the soil to the atmosphere," said Schimel. The gradual warming, he explained, would accelerate decomposition on the upper layers of what would have previously been frozen or near-frozen earth, releasing the greenhouse gas into the air. Because high latitudes contain nearly half of all global soil carbon in their ancient permafrost –– permanently frozen soil –– even a few degrees' rise in temperature could be enough to release massive quantities, turning a carbon repository into a carbon emitter.

"The Arctic is the most rapidly warming biome on Earth, so understanding how permafrost soils are reacting to this change is of major concern globally," Sistla said.

To test their hypothesis, the researchers visited the longest-running climate warming study in the tundra, the U.S. Arctic Long-Term Ecological Research site at Toolik Lake in northern Alaska. This ecosystem-warming greenhouse experiment was started in 1989 to observe the effects of sustained warming on the Arctic environment.

What they initially found was typical of Arctic warming: low-lying, shallow-rooted vegetation giving way to taller plants with deeper roots; greater wood shrub dominance; and increased thaw depth. What they weren't expecting was that two decades of slow and steady warming had not changed the amounts of carbon in the soil, despite changes in vegetation and even the soil food web.

The answer to that mystery, according to Sistla, might be found in the finer workings of the ecosystem: Increased plant growth appears to have facilitated stabilizing feedbacks to soil carbon loss. Their research is published in the recent edition of the journal Nature.

"We hypothesize that net soil carbon hasn't changed after 20 years because warming-accelerated decomposition has been offset by increased carbon inputs to the soil due to a combination of increased plant growth and changing soil conditions," Sistla said.

The increased plant productivity, caused by the warmer temperatures –– on average 2 degrees Celsius in the air and 1 degree in the soil to the permafrost –– has increased plant litter inputs to the soil. Unexpectedly, the soils in the greenhouse experiment developed higher winter temperatures, while the summer warming effect declined.

"These changes reflect a complicated feedback," Sistla said. "Shrubs trap more snow than the lower-lying vegetation, creating warmer winter soil temperatures that further stimulate both decomposers and plant growth. Shrubs also increase summer shading, which appears to have reduced decomposer activity in the surface soil by reducing the greenhouse effect during the summer."

The increased plant growth and deeper thaw, meanwhile, also may have enabled increased carbon availability in the deeper mineral layer that overlies the permafrost. In fact, the researchers found the strongest biological effects of warming at depth, a "biotic awakening," with mineral soil decomposers showing more activity, along with the increased carbon stock at that level. "It's a surprising counterbalance," said Schimel. "It may be that those soil systems are not quite as vulnerable to warming as initially expected."

However, whether or not this phenomenon –– no net loss of soil carbon despite long-term warming –– is a transient phase that will eventually give way to increased decomposition activity and more carbon release, is not yet known. Future studies will include investigation into the mineral soil to determine the age of the carbon, which may in turn yield clues into how the carbon cycle is changing at depth, where the majority of tundra soil carbon is stored.

Funding for this study came from the National Science Foundation Long Term Ecological Research (LTER) Program, DOE Global Change Education Program Graduate Fellowship, a Leal Anne Kerry Mertes scholarship, and Explorer's Club.

According to Sistla and Schimel, this research paradigm validates the NSF LTER program's commitment to supporting long-term experiments, because it creates opportunities for younger scientists to observe effects and condition decades after experiments are established –– results that could not have been foreseen when the experiments were started.

Researchers participating in this study include John C. Moore and Rodney T. Simpson from Colorado State University, Fort Collins; Laura Gough from the University of Texas at Arlington; and Gaius R. Shaver from the Marine Biological Laboratory at Woods Hole, Mass.

U.S. Arctic LTER
Josh Schimel
Seeta Sistla