• UCSBengineering twitter avatar
    Craig Hawker named @AAAS fellow for revolutionizing Materials Research https://t.co/QqV9LGggW6 https://t.co/jeFgooIBBu
    20 hours 6 min ago
  • UCSBengineering twitter avatar
    Happy 60th birthday to @BillNye, mechanical engineer, bow tie aficionado, and science hero. https://t.co/nMOA3j3z9E
    1 day 1 hour ago
  • UCSBengineering twitter avatar
    UCSB researchers are studying mussels to develop an underwater glue #research #engineering https://t.co/C19Fao4H84 https://t.co/veGOItb1Mw
    2 days 1 hour ago
  • ucsantabarbara twitter avatar
    UCSB demographer Shelly Lundberg has found that since the 1950s, most Americans are choosing to get married later. https://t.co/pXNwDebmKy
    2 days 2 hours ago
  • UCSBgauchos twitter avatar
    Gauchos Travel to Arizona State Sunday, Host USC at Thunderdome Dec. 3 https://t.co/UidR1dSu6C
    2 days 2 hours ago
  • ucsantabarbara twitter avatar
    Have a great Thanksgiving #Gauchos!
    2 days 19 hours ago
  • UCSBengineering twitter avatar
    Three UCSB Engineering Professors Named Fellows of the American Physics Society @APSphysics https://t.co/yku8XgQE3Q https://t.co/anwBXJNpCL
    2 days 23 hours ago
  • UCSBgauchos twitter avatar
    Gauchos Hold On For 68-61 Win at USF https://t.co/h3KlZ93zpT
    3 days 12 hours ago
  • UCSB_GradPost twitter avatar
    USAID Hosts Free Live Facebook Chat ‘Food Security in a Time of Global Climate Change… https://t.co/twPISPDdk6 #UCSB
    3 days 16 hours ago
  • UCSBgauchos twitter avatar
    No. 15 @UCSBMensSoccer flies east to take on Clemson in the Sweet Sixteen, televised on ESPN3. PREVIEW >>> https://t.co/IoE9rPbfi8
    3 days 20 hours ago
  • UCSBengineering twitter avatar
    A day in the life of a #NASA #Engineer -- an inspiration for #UCSB engineers https://t.co/NWnguqk1Tr
    3 days 21 hours ago

UCSB Neuroscientists Study Connectivity in the Human Brain

White matter functions like cable networks to connect different brain areas
Tuesday, April 23, 2013 - 17:00
Santa Barbara, CA


Ann M. Hermundstad

Ann M. Hermundstad


Full description below.

The human brain is one of the most complex systems both in terms of its structural organization and of the diverse functionality that structure supports. One of the great challenges in modern neuroscience is to understand how human cognitive function arises from interactions between different regions of the brain.

Using magnetic resonance imaging (MRI) technology, researchers at UC Santa Barbara have identified organizational features of human brain anatomy that support coordinated changes in functional brain activity when an individual is at rest, attending to a visual task, or remembering something such as a word or face. Their work was highlighted in a recent issue of the Proceedings of the National Academy of Sciences.

"Identifying such relationships between anatomy and function is crucial for understanding how the anatomical organization of the human brain both supports and constrains human cognitive function," said lead author Ann M. Hermundstad. A postdoctoral researcher in the Department of Physics and Astronomy at the University of Pennsylvania, Hermundstad was a graduate student in the Department of Physics at UCSB when the research was conducted and the paper was written.

"There have been tens of thousands of experiments mapping out the cortex of the brain and showing the different areas associated with different activities," said Scott T. Grafton a professor in UCSB's Department of Psychological and Brain Science and director of the campus's Brain Imaging Center. "But it's a very modular view of the brain, and scientists have always known there's a lot more to it. There are networks involved, and sets of regions that work together."

Grafton and his team studied the relationship between various cognitive functions, such as attention and memory, and the associated brain networks. "There are nuances," Grafton explained. "And network activity depends on what you're doing. At rest, you see great relationships between the big bundles of wires that connect the two hemispheres, but you see really weak relationships within the hemispheres. The big bundles within the hemisphere don't really track with the activity that ought to be using them. As soon as you do some task, such as remembering a face, the networks within the hemispheres come into play and there is a strong correspondence between the strength of a wire and the strength of a signal." That makes sense, he noted, because so many human functions are specialized to one hemisphere or the other.

One surprising finding of the study, according to Hermundstad, is that the relationships between anatomy and function are observed globally across the entire brain. "We might have expected a more regionally specific relationship," she said. "This global relationship means that we can infer correlations in neural activity, which reflect the putative strength of communication between brain regions, by knowing only the properties of the anatomical pathways that link those brain regions."

This particular study lays the foundation for additional research in functional connectivity, as well as a host of other areas of study. "We can ask why, from a physical and biological standpoint, the brain is wired in this manner –– does the particular layout of anatomical pathways help facilitate efficient or reliable communication between many brain regions?" Hermundstad said. "We can similarly ask whether the relationship between brain anatomy and brain function impacts a person's ability to perform different tasks, such as the ability to learn new information or remember old information."

The findings also make specific predictions about how brain function might change if particular pathways change or become nonfunctional, Hermundstad noted. Such predictions are important for understanding many neurological disorders, such as schizophrenia, that are associated with altered brain anatomy.

Other UCSB researchers contributing to the study include Jean Carlson, professor of physics; Michael B. Miller, professor of psychology; Danielle S. Bassett, Sage Center for the Study of the Mind Junior Research Fellow in physics and in psychological and brain sciences; and Amy Frithsen and Arianne Johnson, graduate students in psychological and brain sciences. In addition, Kevin Brown, currently an assistant research professor of chemical engineering at the University of Connecticut, was a postdoctoral researcher in neuroscience at UCSB when the research was conducted.



Bottom image: MRI techniques enable the noninvasive measurement of structural pathways (white matter cables linking different brain regions, left) and functional pathways (coordinated changes in brain activity, right) in the human brain.
Credit: FMRIB Centre, University of Oxford

Proceedings of the National Academy of Sciences
UC Santa Barbara Brain Imaging Center


After reading this article I feel