• ArtsandLectures twitter avatar
    Alton Brown, Showman of Food TV, Pulls Back the Curtain https://t.co/hz7D9enNGj
    13 hours 42 min ago
  • ArtsandLectures twitter avatar
    Alonzo King: The Poet of Dance https://t.co/h4fJvKtQw9. A gorgeous introduction to the man and his company @LinesBallet.
    13 hours 51 min ago
  • ArtsandLectures twitter avatar
    Get the deets about @WhoseLiveAnyway at the @GranadaSB from @GregProops himself: https://t.co/zepgZaMjzV https://t.co/NMBnuymrjg
    17 hours 8 min ago
  • UCSB_GradPost twitter avatar
    Graduate Division seeks International Peer Advisor for 2016-7 https://t.co/dtvbsIhdaw #UCSB #ucsbgradpost
    18 hours 22 min ago
  • brenucsb twitter avatar
    Stopped more than 10 seconds? Turn off your car. Good reasons not be be an idler https://t.co/EEAGrd30zO via @EnvDefenseFund
    18 hours 52 min ago
  • UCSBgauchos twitter avatar
    Cornejo, Checketts & staff put together highest-ranked recruiting class in @UCSB_Baseball history! READ >>>… https://t.co/rUqwq6ae4v
    19 hours 3 min ago
  • AS_UCSB twitter avatar
    AS Food Bank Open House, UCEN 3167A 3rd floor. Today 9/27 noon-2PM. Check out the initiatives across campus to reduce hunger.
    22 hours 1 min ago

Researchers Discover Sex-Selection Process of Multi-Sexed Organism Tetrahymena

Tuesday, March 26, 2013 - 17:00
Santa Barbara, CA

2971-1.jpg

L to R: Eileen Hamilton, Marcella Cervantes, Michael Lawson, and Eduardo Orias

L to R: Eileen Hamilton, Marcella Cervantes, Michael Lawson, and Eduardo Orias

Photo Credit: 

Melodie Simoni

imagetn.aspx_.jpeg

Full description below.

It's been more than 50 years since scientists discovered that the single-celled organism Tetrahymena thermophila has seven sexes. But in all that time, they've never known how each cell's sex, or "mating type," is determined.

Now they do.

By identifying Tetrahymena's long-unknown mating-type genes, a team of UC Santa Barbara biologists, with research colleagues at the Institute of Hydrobiology of the Chinese Academy of Sciences, and at the J. Craig Venter Institute, also uncovered the unusual process of DNA rearrangements required for sex determination in this organism. The discovery has potential human health implications ranging from tissue transplantation to cancer treatment, including allorecognition –– the ability of an organism to distinguish its own tissues from those of another –– which can be a first line of defense against infection and illness.

The findings are published today in the journal PLOS Biology.

"We were surprised every day in this study," said Marcella D. Cervantes, a Tri-Counties Blood Bank Postdoctoral Fellow in UCSB's Department of Molecular, Cellular, and Developmental Biology (MCDB), and first author of the study. "It's never what we think. We would never have guessed a gene pair would be required in this process."

In the paper, "Selecting One of Several Mating Types through Gene Segment Joining and Deletion in Tetrahymena thermophila," the scientists show that in this multi-sexed, single-celled organism, the sex of the progeny is randomly determined by site-specific recombination events that assemble one complete gene pair and delete all others.

 

"We found a pair of genes that have a specific sequence which is different for each mating type," said Eduardo Orias, a research professor emeritus and part of a UCSB team that also included project scientist Eileen P. Hamilton, of MCDB, and Michael J. Lawson, a doctoral candidate in biomolecular science and engineering. "They are very similar genes –– clearly related to one another, going back probably to a common ancestor –– but they have become different. And each is different in a specific way that determines the mating type of the cell."

 

Each unicellular Tetrahymena boasts two nuclei: the germline nucleus and the somatic nucleus. Genetic information for progeny cells is stored in the former, a sort-of reservoir genome analogous to ovaries or testes in humans; genes are expressed in the latter, the "working" nucleus.

The germline nucleus contains a tandem array of similarly organized but incomplete gene pairs –– one for each mating type. (Although Tetrahymena have seven sexes, the particular cell line used in this study has just six.)

Sex of progeny cells is determined during mating, when fertilization results in a new germline and somatic nucleus that are made using contributions from the germline nuclei of both parents. In the new somatic nucleus, a complete gene pair is assembled when DNA segments from opposite ends of that tandem array are fused to one incomplete pair, and all the other pairs –– or potential pairs, as it were –– are excised, leaving the new cell with one gene pair, and one mating type.

These programmed, site-specific genome rearrangements, occurring at opposite ends of the selected gene pair, are "highly reliable and precise," explained Orias, who has been studying Tetrahymena for more than 50 years. They're also predictable –– to a point. That recombination, as it's known, will occur is certain; in fact, it must, the scientists said. Yet the exact outcome of that process is somewhat counterintuitive.

"The mating type of the ‘parents' has no influence whatsoever on the sex of the progeny," Orias said. "It's completely random, as if they had a roulette wheel with six numbers and wherever the marble ends up is what they get. By chance, they may have the same mating type as the parents –– but it's only by chance. It's a fascinating system."

Given that Tetrahymena is a model organism –– similar enough to higher organisms to inform study of even human biological processes –– the discovery of said system could one day pave the way for important applications.

"By understanding this process better in Tetrahymena, what we learn ultimately may be of use in medicine," Orias said. "Tetrahymena has about as many genes as the human genome. For thousands of those genes you can recognize the sequence similarity to corresponding genes in the human genome with same biological function. That's what makes it a valuable organism to investigate important biological questions."

Funding for this research comes from the U.S. National Science Foundation, the Knowledge Innovation Program of the Chinese Academy of Sciences, the National Natural Science Foundation of China, and the Tri-Counties Blood Bank –– Santa Barbara Foundation.

 

 


 

 

[RETURN TO TOP]  

 

 

Bottom image: Assembling a mating type gene in Tetrahymena. Ribbons show how each incomplete MTB gene (color coded) is joined to the end of the only complete gene (III, orange).
Credit: Michael J. Lawson

 

Eduardo Orias
PLOS Biology