• ucsantabarbara twitter avatar
    ICYMI: #UCSB has begun its planned ecological restoration of a former golf course in Goleta. Details:… https://t.co/zN4ZDLyayK
    4 hours 36 min ago
  • ArtsandLectures twitter avatar
    Enjoy an entertaining mix of delightful cinema with #KidFlixMix, today at 3PM at UCSB Campbell Hall!… https://t.co/ijXZxyCEOL
    6 hours 15 min ago
  • UCSBgauchos twitter avatar
    Softball: Gauchos Split Final Road Games at Hawai'i https://t.co/CpEDdmmhVc
    14 hours 41 min ago
  • UCSBgauchos twitter avatar
    Gauchos are live on @ESPN3 ! WATCH >>> https://t.co/io6ZzYs9Hg https://t.co/BEO8wTxv62
    19 hours 47 min ago
  • ucsantabarbara twitter avatar
    Congrats to Leah Foltz for winning the #UCSB Grad Slam! Now she moves onto the UC-wide competition in SF on May 4th! https://t.co/kVqCtOTWb7
    1 day 2 hours ago
  • UCSBgauchos twitter avatar
    Former @UCSB_Baseball LHP Dom Mazza speaks with his hometown paper after throwing a perfecto this week! https://t.co/GPc3B3qL9g
    1 day 3 hours ago
  • ArtsandLectures twitter avatar
    Watch pianist #MurrayPerahia's breathtaking and imaginative performance, tonight at 7PM at UCSB Campbell Hall!… https://t.co/M83EeA6Y53
    1 day 5 hours ago
  • UCSBgauchos twitter avatar
    Softball: Hawai'i Tops UCSB 5-1 in Gauchos' Final Road Series Opener https://t.co/ejf0MWM1g0
    1 day 13 hours ago
  • UCSBgauchos twitter avatar
    Gauchos Sweep Past UCI 4-0 https://t.co/WFwbxDV8eA
    1 day 15 hours ago
  • ucsantabarbara twitter avatar
    We're happy to see you back, alumni! Don't miss the great events we have this weekend. #AllGauchoReunion… https://t.co/Sbz4iirr7i
    1 day 19 hours ago
  • UCSBgauchos twitter avatar
    Women's Tennis: Cal Poly 0, UC Santa Barb. 4 (Final) No.2 UCSB blanks No.7 Cal Poly in Big West Quarterfinal 4-0 https://t.co/m4kdACQFo5
    1 day 19 hours ago
  • UCSBgauchos twitter avatar
    .@UCSB_Baseball vs. UC Riverside on @ESPN3 is live now! Watch here >>> https://t.co/QJMvNLa0mQ
    1 day 19 hours ago
  • UCSBgauchos twitter avatar
    WWP: Defending Big West Champs Defeated by No. 12 LBSU in Another Overtime Match https://t.co/XIO3RJdo9p
    1 day 20 hours ago
  • UCSBgauchos twitter avatar
    Top-Seeded UCSB Set to Host Big West Golf Championship at Sandpiper GC https://t.co/SyXPKB2Ur5
    1 day 21 hours ago
  • UCSBLibrary twitter avatar
    RT @ForestSways: CEMA poster preservation for primary source research. #Chicanohertiage @Marikhasmanyan @UCSBLibrary #sca17 https://t.co/M…
    1 day 23 hours ago

Researchers Discover Sex-Selection Process of Multi-Sexed Organism Tetrahymena

Tuesday, March 26, 2013 - 17:00
Santa Barbara, CA


L to R: Eileen Hamilton, Marcella Cervantes, Michael Lawson, and Eduardo Orias

L to R: Eileen Hamilton, Marcella Cervantes, Michael Lawson, and Eduardo Orias

Photo Credit: 

Melodie Simoni


Full description below.

It's been more than 50 years since scientists discovered that the single-celled organism Tetrahymena thermophila has seven sexes. But in all that time, they've never known how each cell's sex, or "mating type," is determined.

Now they do.

By identifying Tetrahymena's long-unknown mating-type genes, a team of UC Santa Barbara biologists, with research colleagues at the Institute of Hydrobiology of the Chinese Academy of Sciences, and at the J. Craig Venter Institute, also uncovered the unusual process of DNA rearrangements required for sex determination in this organism. The discovery has potential human health implications ranging from tissue transplantation to cancer treatment, including allorecognition –– the ability of an organism to distinguish its own tissues from those of another –– which can be a first line of defense against infection and illness.

The findings are published today in the journal PLOS Biology.

"We were surprised every day in this study," said Marcella D. Cervantes, a Tri-Counties Blood Bank Postdoctoral Fellow in UCSB's Department of Molecular, Cellular, and Developmental Biology (MCDB), and first author of the study. "It's never what we think. We would never have guessed a gene pair would be required in this process."

In the paper, "Selecting One of Several Mating Types through Gene Segment Joining and Deletion in Tetrahymena thermophila," the scientists show that in this multi-sexed, single-celled organism, the sex of the progeny is randomly determined by site-specific recombination events that assemble one complete gene pair and delete all others.


"We found a pair of genes that have a specific sequence which is different for each mating type," said Eduardo Orias, a research professor emeritus and part of a UCSB team that also included project scientist Eileen P. Hamilton, of MCDB, and Michael J. Lawson, a doctoral candidate in biomolecular science and engineering. "They are very similar genes –– clearly related to one another, going back probably to a common ancestor –– but they have become different. And each is different in a specific way that determines the mating type of the cell."


Each unicellular Tetrahymena boasts two nuclei: the germline nucleus and the somatic nucleus. Genetic information for progeny cells is stored in the former, a sort-of reservoir genome analogous to ovaries or testes in humans; genes are expressed in the latter, the "working" nucleus.

The germline nucleus contains a tandem array of similarly organized but incomplete gene pairs –– one for each mating type. (Although Tetrahymena have seven sexes, the particular cell line used in this study has just six.)

Sex of progeny cells is determined during mating, when fertilization results in a new germline and somatic nucleus that are made using contributions from the germline nuclei of both parents. In the new somatic nucleus, a complete gene pair is assembled when DNA segments from opposite ends of that tandem array are fused to one incomplete pair, and all the other pairs –– or potential pairs, as it were –– are excised, leaving the new cell with one gene pair, and one mating type.

These programmed, site-specific genome rearrangements, occurring at opposite ends of the selected gene pair, are "highly reliable and precise," explained Orias, who has been studying Tetrahymena for more than 50 years. They're also predictable –– to a point. That recombination, as it's known, will occur is certain; in fact, it must, the scientists said. Yet the exact outcome of that process is somewhat counterintuitive.

"The mating type of the ‘parents' has no influence whatsoever on the sex of the progeny," Orias said. "It's completely random, as if they had a roulette wheel with six numbers and wherever the marble ends up is what they get. By chance, they may have the same mating type as the parents –– but it's only by chance. It's a fascinating system."

Given that Tetrahymena is a model organism –– similar enough to higher organisms to inform study of even human biological processes –– the discovery of said system could one day pave the way for important applications.

"By understanding this process better in Tetrahymena, what we learn ultimately may be of use in medicine," Orias said. "Tetrahymena has about as many genes as the human genome. For thousands of those genes you can recognize the sequence similarity to corresponding genes in the human genome with same biological function. That's what makes it a valuable organism to investigate important biological questions."

Funding for this research comes from the U.S. National Science Foundation, the Knowledge Innovation Program of the Chinese Academy of Sciences, the National Natural Science Foundation of China, and the Tri-Counties Blood Bank –– Santa Barbara Foundation.








Bottom image: Assembling a mating type gene in Tetrahymena. Ribbons show how each incomplete MTB gene (color coded) is joined to the end of the only complete gene (III, orange).
Credit: Michael J. Lawson


Eduardo Orias
PLOS Biology