• UCSBgauchos twitter avatar
    Balanced Gauchos Hand UC Davis its Big West Home Loss in Nearly Two Years, 72-66 https://t.co/EAaVYBRIzM
    1 hour 28 min ago
  • UCSBgauchos twitter avatar
    Women's Basketball Cruises to 80-62 Win at UC Irvine https://t.co/4TY0ME9m1C
    1 hour 42 min ago
  • ucsantabarbara twitter avatar
    One more time, please, Laura Lora. This one's titled "National Anthem". Recorded live @UCSBLibrary. #UCSBAmplified https://t.co/PVUxcljfpG
    5 hours 11 min ago
  • UCSBLibrary twitter avatar
    RT @ArtsatMIT: "Libraries have always been as much about connections as about collections." – @jaytiesse #McDermottAward
    7 hours 8 min ago
  • UCSBLibrary twitter avatar
    #TBT The 1967 version of #Uber at #UCSB: The Associated Students' Ride Board. https://t.co/DAPI51I47c
    7 hours 11 min ago
  • UCSBgauchos twitter avatar
    Gaucho Hall of Fame Induction Set for April 30 at Santa Barbara's Lobero Theater https://t.co/Kud74ohIjB
    7 hours 24 min ago
  • UCSBLibrary twitter avatar
    #lovemyFDL Pres #Obama's 2017 budget was published this week. Read it all (it's your $) at https://t.co/L6XCRQBc6h https://t.co/AuubZ6dtx5
    8 hours 21 sec ago
  • UCSBengineering twitter avatar
    RT @J_Ting1: #UMN @UMNCSE CEMS 4th Annual Amundson Lecture ft. Glenn Fredrickson from @UCSBengineering [https://t.co/Wwiu1DLFQr]
    8 hours 5 min ago
  • ArtsandLectures twitter avatar
    Catch folk music for all ages when @OkeeDokeeBros bring Adventure Songs to Campbell Hall https://t.co/1saFlqU4el https://t.co/as98hwcLfL
    9 hours 55 min ago
  • AS_UCSB twitter avatar
    COSWB presents Yoga Thursday, Feb. 11th 5 PM - 6 PM @ Santa Catalina Fiesta Room
    11 hours 4 min ago

In Protein Folding, Internal Friction May Play a More Significant Role than Previously Thought

Tuesday, April 24, 2012 - 17:00
Santa Barbara, CA

2702-1.jpg

An amino acid chain folding into a three-dimensional protein.

An amino acid chain folding into a three-dimensional protein.

Photo Credit: 

Benjamin Schuler

imagetn.aspx_.jpg

The microfluidic mount devised to monitor a denatured protein as it folds.

Photo Credit: 

Shawn Pfeil

imagetn.aspx_.jpg

Physicist Everett Lipman

An international team of researchers has reported a new understanding of a little-known process that happens in virtually every cell of our bodies.

Protein folding is the process by which not-yet folded chains of amino acids assume their specific shapes, hence taking on their specific functions. These functions vary widely: In the human body, proteins fold to become muscles, hormones, enzymes, and various other components.

"This protein folding process is still a big mystery," said UC Santa Barbara physicist Everett Lipman, one of several authors of a paper, "Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy." The paper was published in the Proceedings of the National Academy of Sciences.

A protein's final shape, said Lipman, is primarily determined by the sequence of amino acid components in the unfolded chain. In the process, the components bump up against each other, and when the right configuration is achieved, the chain passes through its "transition state" and snaps into place.

"What we would like to understand eventually is how the chemical sequence of a protein determines what it is going to become and how fast it is going to get there," Lipman said.

Using a microfluidic mixing technique pioneered in the UCSB physics department by former graduate student Shawn Pfeil, the research team, including collaborators from the University of Zurich and the University of Texas, was able to monitor extremely rapid reconfiguration of individual protein molecules as they folded.

In the microfluidic mixer, a "denaturant" chemical used to unravel the proteins was quickly diluted, enabling observation of folding under previously inaccessible natural conditions. The measurements demonstrated that internal friction plays a more significant role in the folding process than could be seen in prior experiments, especially when the protein starts in the more compact unfolded configuration it would have in a denaturant-free living cell.

"At those size scales, everything is dominated by friction," said Lipman, comparing the environment of a protein molecule in water to a human body in molasses. Friction between the molecule and its liquid environment is an issue, as well as the "dry" friction that is independent of the surrounding solvent.

Internal friction slows down the folding process by reducing the rate at which the amino acid chain explores different configurations that may lead to the transition state.

The longer it takes to find its native state –– its final form –– the higher the likelihood it could get stuck in an unfolded state.

"When it is unfolded, it is more vulnerable to being trapped in a misfolded state, or to aggregation with other unfolded protein molecules," said Lipman. Aggregation of misfolded proteins is thought to be a contributor to many types of diseases, such as the amyloid plaques that are associated with Alzheimer's disease. Alternatively, the unfolded and not usable protein could be broken back up into its component amino acids by the cell.

While there is no confirmed link between internal friction and aggregation, or any pattern of friction for one protein that affects others in the same way, Lipman and his colleagues are getting closer to understanding the degree to which internal friction affects the protein folding process.

"These measurements show that under realistic conditions, internal friction plays a significant role in the dynamics of the unfolded state. If a model of the protein folding process doesn't account for this, it will need to be reconsidered," he said.

Everett A. Lipman Website

After reading this article I feel