• UCSBgauchos twitter avatar
    .@UCSBMensSoccer puts up a fight vs. No. 2 Clemson, but falls 3-2 in Sweet 16. RECAP >>> https://t.co/oqnHQnJzTn https://t.co/vgP5NNdQpL
    6 hours 27 min ago
  • UCSBgauchos twitter avatar
    UCSB Falls at Arizona State on Last Second Shot, 70-68 https://t.co/J0qqsxzgGY
    7 hours 24 min ago
  • UCSBgauchos twitter avatar
    And that'll do it. They battled valiantly, but @UCSBMensSoccer's season comes to and w/ a 3-2 Sweet 16 loss at Clemson. Great season guys!
    8 hours 43 min ago
  • UCSBgauchos twitter avatar
    2 mins left here, rain is really pouring now. C'mon Gauchos!
    8 hours 45 min ago
  • UCSBgauchos twitter avatar
    Goal for Clemson. Tic-tac-toe passing leads to a tap-in goal for Kyle Murphy. 3-2 now w/ 11 mins to go #LetsGoGauchos
    8 hours 56 min ago
  • UCSBgauchos twitter avatar
    GOALLLLLLLL! Sloppy back pass from Clemson to the keeper, Kevin Feucht pounces on it and taps into an empty net. 2-2 w/ 20 mins left to go.
    9 hours 6 min ago
  • UCSBgauchos twitter avatar
    Clemson goes up 2-1 on a goal by Diego Campos. 22 mins left for UCSB to equalize.
    9 hours 9 min ago
  • UCSBgauchos twitter avatar
    63' - Yellow card for Clemson, #6 Paul Clowes
    9 hours 16 min ago
  • UCSBgauchos twitter avatar
    62' - Nice build up for UCSB leads to a shot from the right side from Ismail Jome, but he hits the sidenetting.
    9 hours 16 min ago
  • UCSBgauchos twitter avatar
    Tactical foul leading to the YC for Clemson leads to a short-side opportunity for Randy Mendoza, but his shot stays wide left.
    9 hours 23 min ago
  • UCSBgauchos twitter avatar
    58' - Yellow card for Clemson, #11 Aaron Jones
    9 hours 24 min ago
  • UCSBgauchos twitter avatar
    51' - Jome sends one to the far post from inside the 18, but his curler goes just wide.
    9 hours 30 min ago
  • UCSBgauchos twitter avatar
    Second half for @UCSBMensSoccer starting now, tied w/ No. 2 Clemson 1-1! Catch the end of the game here: https://t.co/R9FRG70Get
    9 hours 37 min ago
  • UCSBgauchos twitter avatar
    Halftime stats for UCSB/Clemson (tied 1-1) Shots: 8/5 Shots on Goal: 3/4 Corners: 3/2 Fouls: 13/8 Yellow cards: 1/0
    9 hours 46 min ago
  • UCSBgauchos twitter avatar
    Clemson equalizes late in the first half through an Aaron Jones strike. It's 1-1 heading into halftime.
    9 hours 53 min ago

New Study Ranks ‘Hotspots' of Human Impact on Coastal Areas

Thursday, July 9, 2009 - 17:00
Santa Barbara, CA

Coastal marine ecosystems are at risk worldwide as a result of human activities, according to scientists at UC Santa Barbara who have recently published a study in the Journal of Conservation Letters. The authors have performed the first integrated analysis of all coastal areas of the world.

"Resource management and conservation in coastal waters must address a litany of impacts from human activities, from the land, such as urban runoff and other types of pollution, and from the sea," said Benjamin S. Halpern, first author, who is based at the National Center for Ecological Analysis and Synthesis (NCEAS) at UCSB.

"One of the great challenges is to decide where and how much to allocate limited resources to tackling these problems," he said. "Our results identify where it is absolutely imperative that land-based threats are addressed –– so-called hotspots of land-based impact –– and where these land-based sources of impact are minimal or can be ignored."

The hottest hotspot is at the mouth of the Mississippi River, explained Halpern, with the other top 10 in Asia and the Mediterranean. "These are areas where conservation efforts will almost certainly fail if they don't directly address what people are doing on land upstream from these locations."

Nutrient runoff from upstream farms has caused a persistent "dead zone" in the Gulf of Mexico, where the Mississippi runs into this body of water. The dead zone is caused by an overgrowth of algae that feeds on the nutrients and takes up most of the oxygen in the water.

The authors state that they have provided the first integrated analysis for all coastal areas of the world. They surveyed four key land-based drivers of ecological change:

• nutrient input from agriculture in urban settings

• organic pollutants derived from pesticides

• inorganic pollutants from urban runoff

• direct impact of human populations on coastal marine habitats.

Halpern explained that a large portion of the world's coastlines experience very little effect of what happens on land –– nearly half of the coastline and more than 90 percent of all coastal waters. "This is because a vast majority of the planet's landscape drains into relatively few very large rivers, that in turn affect a small amount of coastal area," said Halpern. "In these places with little impact from human activities on land, marine conservation can and needs to focus primarily on what is happening in the ocean. For example: fishing, climate change, invasive species, and commercial shipping."

Coauthors from NCEAS are Colin M. Ebert, Carrie V. Kappel, Matthew Perry, Kimberly A. Selkoe, and Shaun Walbridge. Fiorenza Micheli of Stanford University's Hopkins Marine Station and Elizabeth M. P. Madin of UCSB's Department of Ecology, Evolution and Marine Biology are also co-authors. Selkoe is also affiliated with the University of Hawaii's Hawaii Institute of Marine Biology.

NCEAS is funded by the National Science Foundation (NSF). The David and Lucile Packard Foundation, the National Marine Sanctuaries, and an NSF Graduate Research Fellowship provided additional support for this research.







Top photo: Global hotspots where human activities on land are impacting coastal marine ecosystems.

The numbers show the rank order of the hottest hotspots (red dots).

The blue and green dots are land-based activities that are having an important effect on marine systems but not as much as those areas marked by the red dots.
Credit: B. Halpern and colleagues, NCEAS.

†† Bottom photo: The hottest hotspot of land-based impact on marine ecosystems is the Mississippi River.

The river plume is shown here as seen from space.
Credit: NASA

National Center for Ecological Analysis and Synthesis at UCS

After reading this article I feel