• UCSBgauchos twitter avatar
    What a way to start off the season! @UCSBMensSoccer tops No.5 Stanford 1-0 Friday. RECAP >>> http://t.co/gPhjHwqFP0 http://t.co/z7Z90RLG5D
    1 hour 7 min ago
  • UCSBgauchos twitter avatar
    The Gauchos start the 2015 season off in style, hold No. 8 Stanford scoreless to win 1-0. @UCSBMensSoccer first win over Stanford since 2004
    2 hours 17 min ago
  • UCSBgauchos twitter avatar
    Stanford trying desperately to get on the board but UCSB's backline can't be beat. Gauchos lead 1-0 with 5 minutes to go
    2 hours 24 min ago
  • UCSBgauchos twitter avatar
    Ahinga Selemani beats his defender to set up Geoffrey Acheampong beautifully in the box, but the lefty's shot goes wide of the post
    2 hours 50 min ago
  • UCSBgauchos twitter avatar
    Stanford with a pair of good chances with just under 30 minutes to go but UCSB still finds a way to keep them off the board and lead 1-0
    2 hours 56 min ago
  • UCSBgauchos twitter avatar
    .@UCSBMensSoccer leading No. 8 Stanford 1-0 at the half thanks to a goal by who else, Nick DePuy. Great first half for the Gauchos
    3 hours 24 min ago
  • UCSBgauchos twitter avatar
    GOAL! Seo-In Kim sends a cross far post and Nick DePuy heads it in to put the Gauchos up 1-0 with 3 minutes left in the half
    3 hours 32 min ago
  • UCSBgauchos twitter avatar
    Women's Soccer: San Jose State 1, UC Santa Barbara 1 (Final - 2OT) UCSB, San Jose State Battle to 1-1 Tie http://t.co/KolrGPE4AY
    3 hours 45 min ago
  • UCSBgauchos twitter avatar
    Big save by Vom Steeg to keep the game scoreless! 25 min left in 1st half @UCSBMensSoccer
    3 hours 56 min ago
  • UCSBgauchos twitter avatar
    Stanford has the advantage in the run of play through 10 minutes but it's still 0-0. @UCSBMensSoccer
    4 hours 5 min ago
  • UCSBgauchos twitter avatar
    WVB: UCSB Opens Season with Back-to-Back Sweeps! #GoGauchos http://t.co/yye1PtugDW
    4 hours 33 min ago
  • UCSBgauchos twitter avatar
    Heres UCSB's starting lineup against Stanford: Vom Steeg, Quezada, Strong, Backus, Jome, Espana, Feucht, Murphy, Acheampong, Selemani, DePuy
    4 hours 33 min ago
  • UCSBgauchos twitter avatar
    Don't miss @UCSBMensSoccer season opener against Stanford. Kickoff in 10 minutes!
    4 hours 41 min ago
  • UCSBgauchos twitter avatar
    @UCSBWomenSoccer ties San Jose St. 1-1 in home season opener behind early goal by Mallory Hromatko
    4 hours 51 min ago
  • UCSBgauchos twitter avatar
    RT @UCSB_Volleyball: Make that two sweeps on opening day! We topped UIW 3-0 and are now 2-0!… https://t.co/iybbM7N1tn
    5 hours 24 min ago

Opening The 'Black Box': Scientists Gain New Tools To Learn About The Near-Shore Environment

Tuesday, February 18, 2003 - 16:00
Santa Barbara, CA

(Denver, Colorado) -- A group of scientists is putting together a picture of what until now has been a black box -- the near-shore ocean environment. At the same time, they are developing a picture of where marine animals live in the different parts of their life cycle. The information is invaluable to marine reserve planners, the fishing industry and many others.

"New Tools for Designing Effective Marine Reserves," to be published in a future edition of the journal Frontiers in Ecology, outlines the state of the art of management of marine reserves. The findings will be presented at a press conference of the American Association of the Advancement of Science on Friday, February 15, at noon Mountain Time.

Previously, the open ocean has been studied the most, and yet the area where most fishing occurs and where humans interact with the ocean has been neglected, partly because it is so complicated, according to author Robert R. Warner, professor of ecology, evolution and marine biology at the University of California, Santa Barbara.

In short, the authors look at:

·Remote sensing which provides "real time" data about the ocean.

·The chemical signal of trace metals in growing skeletons which provides a tracking device for where larvae and juveniles drift in the sea.

·Genetic differences among populations that can reveal barriers to dispersal that are otherwise unseen, and are beginning to be used to measure the scale of dispersal inside and outside reserves.

·Layers of ecosystem information placed in a geographic context by GIS (global information systems) computer mapping, which provides an accessible summary of this complex information that can be used by computer search engines to list alternative management solutions.

The authors explain that one expanding technology is remote sensing via satellites that measure characteristics of the ocean including color, temperature, surface elevation and winds, helping to map the physical forces that drive ocean circulation.

Warner provides an example of the complexity. "It is as if one is trying to manage a deer population on land but the does give birth to dandelion puffs and the seeds drift off in the wind," he said. "We haven't known how far they go, or how they get back. We are just beginning to discover where the marine young go, to take this apart. We need to be able to uncover the physical mechanisms, the current flows and the oceanographic features."

"In order to figure out the movement of both fish and invertebrates, we've got to become really good oceanographers," said Steve Gaines, co-author and director of the Marine Science Institute at UC Santa Barbara. He said that marine larvae may drift for awhile on a top current and then drop to a lower current going the opposite direction that brings them back close to where they began.

Warner explained how the inner ear, or balancing mechanism of the fish (the otolith for fish or the statolith for invertebrate marine animals) is like a pearl that begins before birth with tiny rings that reflect the composition of the water for each day of the life of the animal. With further study, scientists will be able to use these markers like internal flight recorders to follow the movements of the marine animal.

Another important tool is genetics, according to Warner. The human genome project has moved genetics forward so that scientists will be able to compare the genes in populations of fish and find out if they are moving from one area to another. For example, Oregon waters may be the birthplace of fish that eventually settle in California waters. Or certain areas of the ocean may be seeding themselves.

The paper, New Tools for Designing Effective Marine Reserves, in Frontiers in Ecology, was written by S. R. Palumbi, of the Department of Biological Sciences at Stanford University; S. D. Gaines, director of the Marine Science Institute at UC Santa Barbara; H. Leslie of the Department of Zoology, Oregon State University; and R. R. Warner, Department of Ecology, Evolution, and Marine Biology.

The authors are contributing to the work of the highly interdisciplinary group, PISCO, the Partnership for Interdisciplinary Studies of Coastal Oceans, a long-term program of scientific research and training dedicated to advancing the understanding of marine ecosystems along the U. S. West Coast. The principal investigators are from UC Santa Barbara, UC Santa Cruz, Oregon State University, and Stanford University.

After reading this article I feel