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Seeking Moments of Disorder

The future of technology relies, to a great extent, on new materials, but the work of
developing those materials begins years before any specific application for them is
known. Stephen Wilson, a professor of materials in UC Santa Barbara’s College of
Engineering, works in that “long before” realm, seeking to create new materials that
exhibit desirable new states.

In the paper "Field-tunable quantum disordered ground state in the triangular-lattice
antiferromagnet NaYbO2," published in the journal Nature Physics, Wilson and
colleagues Leon Balents, of the campus’s Kavli Institute for Theoretical Physics, and
Mark Sherwin, a professor in the Department of Physics, describe their discovery of a
long-sought “quantum spin liquid state” in the material NaYbO2 (sodium ytterbium
oxide). The study was led by materials student Mitchell Bordelon and also involved
physics students Chunxiao Liu, Marzieh Kavand and Yuanqi Lyu, and undergraduate
chemistry student Lorenzo Posthuma, as well as collaborators at Boston College and
at the U.S. National Institute of Standards and Technology.

At the atomic level, electrons in one material’s lattice structure behave differently,
both individually and collectively, from those in another material. Specifically, the
“spin,” or the electron’s intrinsic magnetic moment (akin to an innate bar magnet)
and its tendency to communicate and coordinate with the magnetic moments of
nearby electrons differs by material. Various types of spin systems and collective
patterns of ordering of these moments are known to occur, and materials scientists
are ever seeking new ones, including those that have been hypothesized but not yet
shown to exist.
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“There are certain, more classical moments that let you know to a very high degree
of certainty that the spin is pointing in a particular direction,” Wilson explained. “In
those, the quantum effects are small. But there are certain moments where the
quantum effects are large, and you can’t precisely orient the spin, so there is
uncertainty, which we call ‘quantum fluctuation.’”

Quantum magnetic states are those in which the magnetism of a material is
primarily driven by such quantum fluctuations, generally derived from the
uncertainty principle, intrinsic to magnetic moments. “So, you envision a magnetic
moment, but the uncertainty principle says that I can’t perfectly orient that in any
one direction,” Wilson noted.

Explaining the quantum spin liquid state, which was proposed long ago and is the
subject of this paper, Wilson said, “In conventional materials, the magnetic moments
talk to one another and want to orient relative to one another to form some pattern
of order.” In classical materials, this order is disrupted by thermal fluctuations, what
Wilson describes as “just heat from the environment.”

“If the material is warm enough, it is nonmagnetic, meaning the moments are all
sort of jumbled relative to one another,” he explained. “Once the material is cooled,
the moments start to communicate, such that their connection to one another
outcompetes the thermal fluctuations and they form an ordered state. That’s
classical magnetism.”

But things are different in the quantum world, and magnetic moments that fluctuate
can actually be the inherent “ground state” of a material.

“So, you can ask if there is a magnetic state in which the moments are precluded
from freezing or forming some pattern of long-range order relative to one another,
not by thermal fluctuations, but instead, by quantum fluctuations,” Wilson said.
“Quantum fluctuations become more relevant as a material cools, while thermal
fluctuations increase as it heats up, so you want to find a magnet that doesn’t order
until you can get it cool enough such that the quantum fluctuations preclude it from
ever ordering.”

That quantum disorder is desirable because it is associated with entanglement, the
quantum mechanical quality that makes it possible to encode quantum information.
To determine whether NaYbO2 might exhibit that characteristic, the researchers had
to determine the intrinsic, or ground state of the material’s magnetic moments when



all thermal fluctuations are removed. In this particular system, Wilson was able to
determine experimentally that the magnetic moments are intrinsically in a
fluctuating, disordered state, thus confirming that a quantum disordered state
exists.

To find the hypothesized state, said Wilson, “First you have to put highly quantum
magnetic moments into a material, but your material needs to be constructed such
that the moments don’t want to order. You do that by using the principle of
‘magnetic frustration.’”

A simple way to think of that, according to Wilson, is to imagine a single triangle in
the lattice structure of the material. “Let’s say I build my material so that the
magnetic moments are all located on a triangular lattice,” he said, “and they all talk
to one another in a way that has them wanting to orient antiferromagnetically, or
antiparallel, to one another.”

In that arrangement, any adjacent moment on the triangle wants to orient
antiparallel to its neighbor. But because there are an odd number of points, you
have one up at one point and one down (antiparallel to the first) at the second point,
meaning that the third moment has a differently oriented moment on each side, so it
doesn’t know what to do. All of the moments are competing with one another.

“That’s magnetic frustration, and, as it turns out, it reduces the temperature at
which the moments are finally able to find some arrangement they all agree on,”
Wilson said. “So, for instance, classically, nature decides that at some temperature
the mismatched moments agree that they will all point to 120 degrees relative to
each other. So they’re not all 100 percent happy but it’s some compromise that
establishes an ordered state.”

From there, he added, “The idea is to take a frustrated lattice where you have
already suppressed the ordered state, and add quantum fluctuations to it, which
take over as you cool the material. Magnetic frustration lowers the ordering
temperature enough so that quantum fluctuations eventually take over and the
system can stabilize into a fundamentally disordered quantum spin state.”

Wilson continued: “That’s the paradigm of what people are looking for; however,
some materials may seem to display this state when actually, they don’t. For
instance, all real materials have disorder, such as chemical or structural disorder,
and this can also prevent the magnetic moments from talking to each other



effectively and becoming ordered. In such a case, Wilson says, “They might form a
disordered state, but it’s more of a frozen, or static, disordered state than it is a
dynamic quantum state.

“So, if I have a magnetic system that doesn’t order at the lowest temperatures I can
measure, it can be tricky trying to understand whether what I’m measuring is an
intrinsic quantum spin liquid fluctuating type of state or a frozen, extrinsic,
chemically driven disordered state. That is always debated.”

Among the most interesting findings about this new material, Wilson said, is that
even at the lowest measurable temperature — .005 degree Centigrade above
absolute zero — it still doesn’t order.

“However, in this material we can also apply a magnetic field, which breaks this
competition engendered by magnetic frustration, and then we can drive it to order,
inducing a special kind of antiferromagnetic state,” he added. “The reason that’s
important is because this special state is very delicate and a very good fingerprint
for how much chemical disorder there is in the system and its influence on the
magnetic ground state. The fact that we can drive this field-driven state tells us that
the disordered state we see at low temperature with zero magnetic field is indeed an
intrinsically quantum disordered state, consistent with being a quantum spin liquid
state.”
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