• ucsantabarbara twitter avatar
    Congrats to Leah Foltz for winning the #UCSB Grad Slam! Now she moves onto the UC-wide competition in SF on May 4th! https://t.co/kVqCtOTWb7
    3 hours 22 min ago
  • UCSBgauchos twitter avatar
    Former @UCSB_Baseball LHP Dom Mazza speaks with his hometown paper after throwing a perfecto this week! https://t.co/GPc3B3qL9g
    3 hours 42 min ago
  • ArtsandLectures twitter avatar
    Watch pianist #MurrayPerahia's breathtaking and imaginative performance, tonight at 7PM at UCSB Campbell Hall!… https://t.co/M83EeA6Y53
    6 hours 27 min ago
  • UCSBgauchos twitter avatar
    Softball: Hawai'i Tops UCSB 5-1 in Gauchos' Final Road Series Opener https://t.co/ejf0MWM1g0
    13 hours 48 min ago
  • UCSBgauchos twitter avatar
    Gauchos Sweep Past UCI 4-0 https://t.co/WFwbxDV8eA
    16 hours 25 min ago
  • ucsantabarbara twitter avatar
    We're happy to see you back, alumni! Don't miss the great events we have this weekend. #AllGauchoReunion… https://t.co/Sbz4iirr7i
    20 hours 2 min ago
  • UCSBgauchos twitter avatar
    Women's Tennis: Cal Poly 0, UC Santa Barb. 4 (Final) No.2 UCSB blanks No.7 Cal Poly in Big West Quarterfinal 4-0 https://t.co/m4kdACQFo5
    20 hours 5 min ago
  • UCSBgauchos twitter avatar
    .@UCSB_Baseball vs. UC Riverside on @ESPN3 is live now! Watch here >>> https://t.co/QJMvNLa0mQ
    20 hours 24 min ago
  • UCSBgauchos twitter avatar
    WWP: Defending Big West Champs Defeated by No. 12 LBSU in Another Overtime Match https://t.co/XIO3RJdo9p
    20 hours 42 min ago
  • UCSBgauchos twitter avatar
    Top-Seeded UCSB Set to Host Big West Golf Championship at Sandpiper GC https://t.co/SyXPKB2Ur5
    22 hours 17 min ago
  • UCSBLibrary twitter avatar
    RT @ForestSways: CEMA poster preservation for primary source research. #Chicanohertiage @Marikhasmanyan @UCSBLibrary #sca17 https://t.co/M…
    1 day 18 min ago
  • UCSBLibrary twitter avatar
    @AmldavisAnn We're glad you're interested in using, please contact (805) 893-3062 or @library.ucsb.edu">special@library.ucsb.edu for m… https://t.co/fwAVOMoWyB
    1 day 18 min ago
  • UCSB_GradPost twitter avatar
    CPT F-1 Visa workshop for international students on May 11 https://t.co/l6xZEndRVl #UCSB #ucsbgradpost
    1 day 34 min ago
  • UCSB_GradPost twitter avatar
    Two open postdoc positions on Verification of Quantum Cryptography https://t.co/ZRA2iro7Ym #UCSB #ucsbgradpost
    1 day 34 min ago
  • UCSB_GradPost twitter avatar
    Professor Micaela J. Díaz-Sánchez to speak about bomba on May 2 https://t.co/D4g84xVXkD #UCSB #ucsbgradpost
    1 day 34 min ago

An Unexpected Finding

A rare iodine polymer discovery is key to starch-iodine mystery
Wednesday, August 17, 2016 - 10:15
Santa Barbara, CA

Chabinyc-Seshadri-Evans-Wudl.jpg

Chabinyc Seshadri Evans Wudl

From left to right: Michael Chabinyc, Ram Seshadri, Hayden Evans, Fred Wudl

Photo Credit: 

Courtesy Image

In the pursuit of a new class of photovoltaic materials, researchers at UC Santa Barbara happened upon an entirely different discovery that addresses a centuries-old mystery of chemistry: Why does an iodine solution turn blue-black when starch is added to the mix?

The exact structural-chemical mechanism that causes the intense deflection of blue light during this transformation has been a subject of active speculation until this point. Shedding light on this mechanism, UCSB researchers in the labs of materials professors Fred Wudl and Ram Seshadri report first observation of crystalline infinite iodide polymers, discovered as part of a pyrroloperylene-iodine complex, an organic semiconductor that contains iodine. Their paper, Infinite Polyiodide Chains in the Pyrroloperylene-Iodine Complex, was recently published in Angewandte Chemie.

“Every college student taking introductory chemistry learns titration of iodide with thiosulfate solution as part of the curriculum. You add starch as an indicator of iodine to detect the end-point,” explained Seshadri. “When you add iodine to potato starch in solution, it turns a dark blue-black.”

This starch-iodine complex transformation discovered almost exactly 200 years ago, is used in classrooms as a foundational teaching tool in chemistry and biochemistry, such as demonstrating the action of amylose, the enzyme that breaks down starch, in human saliva, or the chemistry behind counterfeit banknote detection pens.

Fast forward two centuries of scientific discovery to UCSB researchers using a technique called Raman spectroscopy, which observes the light-scattering patterns of a molecule that can be a unique fingerprint, to study iodine chains in a semiconducting pyrroloperylene-iodine complex. They initially set out to study this promising organic semiconductor material as part of a new class of solar power-generating materials, a project funded by the U.S. Department of Energy.

“We determined that, when iodide is in the presence of iodine and interspersed between molecules of pyrroloperylene, a polymer chain forms,” Wudl explained. “There is only one other element that can form its own polymeric chain, and that’s sulfur.” Single-element polymeric chains are a rarity, to say the least.

“The problem with sulfur polymer chains is that they’re not crystalline,” Wudl continued. “If there’s no molecule repeating in a precise way you can’t determine where all the atoms are.” The crystalline structure of the polyiodide chain is what allowed the UCSB materials researchers to clearly observe iodine in this form.

What this discovery means to the future of chemistry and materials science, only time will tell, according to Wudl. “If you had told someone in the 1950s there would someday be organic electronic materials they would have laughed you out of the room,” he said. “Discovering new compositions of matter usually leads to new concepts, and these concepts drive technology down the road.”

For now, they agreed, the discovery is mainly of academic interest. “If you know where the atoms are, you can use the knowledge to develop things later, such as functional materials for new electronics,” said Seshadri. “At this time, we can say with confidence this is one for the chemistry textbooks.”

Contact Info: 

Sonia Fernandez
(805) 893-4765
sonia.fernandez@ucsb.edu

Topics: