• brenucsb twitter avatar
    What's it like to study at #BrenUCSB? See these students' stories to find out: https://t.co/A0sE88SEwV
    3 hours 24 min ago
  • UCSBgauchos twitter avatar
    Gauchos Push First Place Long Beach St. to the Brink, Fall Just Short in Five https://t.co/7FHfqLwpBh
    15 hours 59 min ago
  • ArtsandLectures twitter avatar
    .@MairaKalman's Illustrated Life: Legendary Author/Artists Extols the Beauty of Not Knowing:… https://t.co/BCa6uiIN7D
    20 hours 4 min ago
  • ArtsandLectures twitter avatar
    ICYMI: check out @marcmaron's interview with the @SBIndpndnt, then catch his #TooRealTour tonight at 8PM at #UCSB C… https://t.co/aetI8cgbVH
    20 hours 35 min ago
  • ArtsandLectures twitter avatar
    RT @SBIndpndnt: Jookin’ Master Lil Buck Performs at UCSB: Director Damian Woetzel Speaks on Buck’s One-Of-A-Kind Talents https://t.co/4wmEF…
    20 hours 44 min ago
  • ArtsandLectures twitter avatar
    RT @vivaelartesb: Yplotecuani tonight free at Isla Vista School 7 pm https://t.co/otwn99ENg2
    20 hours 58 min ago
  • ArtsandLectures twitter avatar
    RT @StationCDRKelly: Great day on #Earth! Met @POTUS at the @WhiteHouse w @ShuttleCDRKelly today and talked about the environment and our #…
    21 hours 39 min ago
  • UCSBgauchos twitter avatar
    Mays, Moreno de Alboran Advance to Round of 16 at ITA Southwest Regional; Doubles Tandem Moves into Qu... https://t.co/Zbyla6Q2g3
    22 hours 7 min ago
  • UCSBgauchos twitter avatar
    .@UCSBMensSoccer MF Josue España named the most underrated player in college soccer by @csoccernews >>>… https://t.co/HKYH20KhZ5
    22 hours 44 min ago
  • ArtsandLectures twitter avatar
    RT @RandyLewis2: Some of the most spine-tingling music you'll ever hear: The #Basiani Georgian Vocal Ensemble. 'This is our jazz.' https://…
    23 hours 3 min ago

Major Antarctic Ice Loss Could Continue for Decades

New analyses by a research team, including a member of UCSB’s Earth Research Institute, shows that the Pine Island Glacier also thinned abruptly 8,000 years ago
Thursday, February 20, 2014 - 11:00
Santa Barbara, CA

Dylan Rood ENH.jpg

Dylan Rood

Dylan Rood uses an accelerator mass spectrometer to measure beryllium-10, the method used to reconstruct the thinning history of the Pine Island Glacier.

Photo Credit: 

Lawrence Livermore National Laboratory

New research suggests that the largest single contributor to global sea level rise, a glacier of the West Antarctic Ice Sheet, may continue melting for decades to come. International geologists, including Dylan Rood, a researcher at UC Santa Barbara’s Earth Research Institute, found that Pine Island Glacier, which is rapidly accelerating, thinning and retreating, has actually thinned rapidly before.

The team said its findings, which draw from glacial-geological and geochronological data, demonstrate the potential for current ice loss to continue for several decades. The paper, published today in Science, is part of a wide range of international scientific efforts to understand the behavior of this important glacier.

The study shows that during the early Holocene around 8,000 years ago the glacier thinned as fast as it has in recent decades, providing an important model for its future behavior. The glacier is currently experiencing significant acceleration, thinning and retreat thought to be caused by ocean-driven melting — an increase in warm ocean water finding its way under the ice shelf — which is in turn causing a reduction in ice shelf buttressing.

“The melting of the Pine Island Glacier at a rate comparable to that over the past two decades is rare but not unprecedented,” Rood said. “Ongoing ocean-driven melting of the glacial ice shelf in current times may result in continued rapid thinning and grounding line retreat for several more decades or even centuries.”

After 20 years of rapid ice loss, concerns are arising over how much more ice will be lost to the ocean in the future. Model projections of the future of Pine Island Glacier contain large uncertainties, leaving questions about the rate, timing and persistence of future sea level rise. However, rocks exposed by retreating or thinning glaciers provide evidence of past ice sheet change, which helps scientists to predict possible future change.

The geologists used highly sensitive dating techniques pioneered by a team member to track the thinning of Pine Island Glacier through time and to show that the past thinning lasted for several decades. According to lead author Joanne Johnson of the British Antarctic Survey, the team’s geological data illustrate the history of Pine Island Glacier in greater detail than ever before. The fact that it thinned so rapidly in the past demonstrates how sensitive it is to environmental change, she said, with small changes producing dramatic and long-lasting results.

“Based on what we know, we can expect the rapid ice loss to continue for a long time yet, especially if ocean-driven melting of the ice shelf in front of Pine Island Glacier continues at current rates,” she said.

Funded by the Natural Environment Research Council, this work was also made possible by a Marie Tharp Fellowship in the Earth, Environmental and Ocean Sciences from the Earth Institute/Lamont-Doherty Earth Observatory at Columbia University (awarded to Joanne Johnson). Logistic support was provided by the Alfred Wegener Institute.

Contact Info: 

Julie Cohen
(805) 893-7220