• ucsantabarbara twitter avatar
    A new construction project on campus aims to ‘pave’ the way for updated utilities & better infrastructure at #UCSB. https://t.co/FkRmgpo8LC
    4 hours 1 min ago
  • UCSBgauchos twitter avatar
    WWP: Gauchos End The Day With A Dominate Win And A Close Loss https://t.co/U0mHxrjEPb
    1 day 1 hour ago
  • UCSBgauchos twitter avatar
    WBB: Gauchos Share The Cape In All-Around 74-62 Win Over Hawai'i On Super Hero Night https://t.co/7JozUy4Wi1
    1 day 3 hours ago
  • UCSBgauchos twitter avatar
    Vincent Hits 1,000 Point Mark But UCSB Loses at UC Riverside, 65-55 https://t.co/rvtR2CFZwU
    1 day 3 hours ago
  • ArtsandLectures twitter avatar
    Tune in to @prairie_home to hear @odonovanaoife & pals performing songs from #lalaland! Now on KCLU
    1 day 4 hours ago
  • UCSBgauchos twitter avatar
    WBB: FINAL UCSB 74 - Hawaii 62 Gauchos rack up season-best 4th straight win, improve to 9-9 (4-1). Edelman 19pts 6reb, Toler 17pts off bench
    1 day 4 hours ago
  • UCSBgauchos twitter avatar
    WBB: We're inside the last minute of regulation, Toler with 10 points in the final quarter. 71-60 UCSB 46.1 remaining.
    1 day 5 hours ago
  • UCSBgauchos twitter avatar
    WBB: Gauchos roar off the first 8pts and Hawaii needs to talk about it! 58-45 UCSB 7:54 remaining in the fourth quarter.
    1 day 5 hours ago
  • UCSBgauchos twitter avatar
    WBB: End of Third Quarter UCSB 50 - Hawaii 45 Hernandez goes for 8pts in 3Q. Gaucho pep band is ready for the fourt… https://t.co/VDP5Er1MZ1
    1 day 5 hours ago
  • UCSBgauchos twitter avatar
    WBB: Gauchos respond to a mini Hawaii run with a Durr and-one, and back-to-back 3's from Hernandez. 45-37 UCSB 4:56 left in 3Q.
    1 day 5 hours ago
  • UCSBgauchos twitter avatar
    WBB: Halftime UCSB 31 - Hawaii 26 Edelman with team highs 10pts and 3rebs. Gauchos a 14-8 pts in paint advantage, 11-2 off turnovers.
    1 day 6 hours ago
  • UCSBgauchos twitter avatar
    WBB: Toler with an emphatic chase down block from behind! She has first 2 buckets for UCSB in 2Q. 27-19 Gauchos, 4:21 before halftime.
    1 day 6 hours ago
  • UCSBgauchos twitter avatar
    WBB: End of First Quarter UCSB 23 - Hawaii 15. Porter leads all scorers with 9pts, 3/4 from downtown. Gauchos 11pts from 5 Hawaii turnovers.
    1 day 6 hours ago
  • UCSBgauchos twitter avatar
    WBB: Gauchos sink their first 4 from the field, 3/3 from downtown and lead 18-9 at 1Q media break. Porter 2/2 for trey, Edelman doing work.
    1 day 6 hours ago
  • brenucsb twitter avatar
    Growing an interest in nature: #UCSB students & Edible Campus Project plant seeds of sustainability in preschoolers https://t.co/dyoiFtroWo
    1 day 12 hours ago

The Bitter and the Sweet: Fruit Flies Reveal an Interaction Between the Two

The study explains how fruit flies respond to sugar when bitter compounds are added
Wednesday, August 21, 2013 - 17:00
Santa Barbara, CA

Figure 3adj.jpg

OBP49a protein

The red shows expression of the OBP49a protein in accessory (thecogen) cells in gustatory sensilla, which are distributed on the labella.

Pacman1.jpeg

Pac-Man

Bitter-containing foods, such as coffee beans, reduce the attractive taste of sugar. This concept is depicted by a Pac-Man, comprised of coffee beans, eating up sugar cubes.

Fruit flies have a lot to teach us about the complexity of food. Like these tiny little creatures, most animals are attracted to sugar but are deterred from eating it when bitter compounds are added.

A new study conducted by Craig Montell, Duggan Professor of Neuroscience in the Department of Molecular, Cellular and Developmental Biology, explains a breakthrough in understanding how sensory input impacts fruit flies' decisions about sweet taste. The findings were published today in the journal Neuron.

It is generally well known that the addition of bitter compounds inhibits attraction to sugars. However, until now the cellular and molecular mechanisms underlying an important aspect of this ubiquitous animal behavior were poorly understood.

When animals encounter bitterness in foods, two factors cause them to stop eating. First, bitter compounds bind to proteins called bitter gustatory receptors (GRs), which inhibits feeding. The second — and more elusive — factor involves inhibition of the sugar response. This is the focus of Montell's research.

At the center of the team's discovery is the function of an odorant-binding protein (OPB) in the gustatory system. These proteins are usually but not exclusively resident in the olfactory system. Montell's team found definitive evidence that an OBP, synthesized and released from non-neuronal cells, not only binds bitter tastants, but also moves and binds to the surface of nearby gustatory receptor neurons (GRNs) that contain sugar-activated GRs.

This unanticipated process inhibits the activity of these GRNs and reduces the fruit flies' attraction to sugars. These results not only reveal an unexpected role for an OBP in taste, but also identify the first molecular player (OBP49a) involved in the integration of opposing attractive and aversive gustatory stimuli in fruit flies.

The researchers used two different fruit flies, wild-type and mutants missing the OBP49a protein, to demonstrate that bitter compounds suppress feeding behavior by binding to the OBP49a protein. As expected, wild-type flies find bitter aversive and prefer the lower concentration of sucrose when the higher concentration of sucrose is laced with bitter tastants such as quinine.

The same was not true of the mutant flies, which do not express OBP49a. Their avoidance behavior was impaired because the bitter compounds did not inhibit the sweet response by binding to OPB49. However, loss of OBP49a did not affect gustatory behavior or action potentials in sugar- or bitter-activated GRNs when the GRNs were presented with just one type of tastant.

"We showed that the OBP49a protein was in very close proximity or even touching the sugar GRs," said Montell. "If the bitter compound weren't present, there would be normal sugar activation. We found that decreased behavioral avoidance to a sucrose/aversive mixture in the mutant flies was due to a deficit in the sugar-activated GRNs and not due to effects on GRNs activated by bitter compounds."

OBP49a is the first molecule shown to promote the inhibition of the sucrose-activated GRNs by aversive chemicals in fruit flies. The findings demonstrate at least one important cellular mechanism through which bitter and sweet taste integration occurs in the taste receptor neurons. However, the findings do not exclude the possibility that suppression of sweet by bitter compounds could also take place through the integration of separate bitter and sweet inputs in the brain.

"As we get a better understanding of aversive and attractive chemosensory behaviors in flies, it helps us understand how insect pests can be controlled," said Montell. "This is a step toward understanding the behaviors of related insects that spread disease. Molecules related to the OBPs and GRs in fruit flies are also in ticks and mosquitos that spread parasites and viruses."

Craig Montell

Neuron

Contact Info: 

Julie Cohen
julie.cohen@ia.ucsb.edu
(805) 893-7220

Topics: