• UCSBgauchos twitter avatar
    WWP: Gauchos End The Day With A Dominate Win And A Close Loss https://t.co/U0mHxrjEPb
    2 hours 54 min ago
  • UCSBgauchos twitter avatar
    WBB: Gauchos Share The Cape In All-Around 74-62 Win Over Hawai'i On Super Hero Night https://t.co/7JozUy4Wi1
    4 hours 15 min ago
  • UCSBgauchos twitter avatar
    Vincent Hits 1,000 Point Mark But UCSB Loses at UC Riverside, 65-55 https://t.co/rvtR2CFZwU
    5 hours 7 min ago
  • ArtsandLectures twitter avatar
    Tune in to @prairie_home to hear @odonovanaoife & pals performing songs from #lalaland! Now on KCLU
    5 hours 51 min ago
  • UCSBgauchos twitter avatar
    WBB: FINAL UCSB 74 - Hawaii 62 Gauchos rack up season-best 4th straight win, improve to 9-9 (4-1). Edelman 19pts 6reb, Toler 17pts off bench
    6 hours 13 min ago
  • UCSBgauchos twitter avatar
    WBB: We're inside the last minute of regulation, Toler with 10 points in the final quarter. 71-60 UCSB 46.1 remaining.
    6 hours 18 min ago
  • UCSBgauchos twitter avatar
    WBB: Gauchos roar off the first 8pts and Hawaii needs to talk about it! 58-45 UCSB 7:54 remaining in the fourth quarter.
    6 hours 35 min ago
  • UCSBgauchos twitter avatar
    WBB: End of Third Quarter UCSB 50 - Hawaii 45 Hernandez goes for 8pts in 3Q. Gaucho pep band is ready for the fourt… https://t.co/VDP5Er1MZ1
    6 hours 42 min ago
  • UCSBgauchos twitter avatar
    WBB: Gauchos respond to a mini Hawaii run with a Durr and-one, and back-to-back 3's from Hernandez. 45-37 UCSB 4:56 left in 3Q.
    6 hours 51 min ago
  • UCSBgauchos twitter avatar
    WBB: Halftime UCSB 31 - Hawaii 26 Edelman with team highs 10pts and 3rebs. Gauchos a 14-8 pts in paint advantage, 11-2 off turnovers.
    7 hours 14 min ago
  • UCSBgauchos twitter avatar
    WBB: Toler with an emphatic chase down block from behind! She has first 2 buckets for UCSB in 2Q. 27-19 Gauchos, 4:21 before halftime.
    7 hours 25 min ago
  • UCSBgauchos twitter avatar
    WBB: End of First Quarter UCSB 23 - Hawaii 15. Porter leads all scorers with 9pts, 3/4 from downtown. Gauchos 11pts from 5 Hawaii turnovers.
    7 hours 35 min ago
  • UCSBgauchos twitter avatar
    WBB: Gauchos sink their first 4 from the field, 3/3 from downtown and lead 18-9 at 1Q media break. Porter 2/2 for trey, Edelman doing work.
    7 hours 41 min ago
  • brenucsb twitter avatar
    Growing an interest in nature: #UCSB students & Edible Campus Project plant seeds of sustainability in preschoolers https://t.co/dyoiFtroWo
    13 hours 25 min ago
  • UCSBgauchos twitter avatar
    Gauchos Travel to No. 7 UCLA https://t.co/JPxd6rq7Qt
    1 day 4 hours ago

Feeding Galaxy Caught in Distant Searchlight by International Research Team

Friday, July 5, 2013 - 17:00
Santa Barbara, CA

3064-1.jpg

Artist’s impression of a galaxy accreting material from its surroundings.

Artist’s impression of a galaxy accreting material from its surroundings.

Photo Credit: 

Image courtesy European Southern Observatory

An international group of astronomers that includes UC Santa Barbara astrophysicist Crystal Martin and former UCSB postdoctoral researcher Nicolas Bouché has spotted a distant galaxy hungrily snacking on nearby gas. The gas is seen to fall inward toward the galaxy, creating a flow that both fuels star formation and drives the galaxy's rotation. This is the best direct observational evidence so far supporting the theory that galaxies pull in and devour nearby material in order to grow and form stars. The results will appear in the July 5 issue of the journal Science.

Spiral galaxies like our own Milky Way formed billions of years ago in the dark matter concentrations that began to grow shortly after the Big Bang. As gas cooled and condensed, stars formed, which, over time, synthesized heavy elements and polluted the galaxy with this enriched material upon their death.

But what that model has not been able to explain is the continuous formation of stars in some galaxies, despite the constant rate at which galaxies turn molecular gas into stars. The simplest model calls for a closed system and predicts star formation should have ceased long ago due to the limited gas supply.

"It's been a problem," said Martin. Galaxies should use up their gas on a time scale that's much shorter than what has been observed, she explained. In fact our own galaxy should have already run out of gas, but stars continue to form in it. "Galaxies must have a mechanism for acquiring more gas," she continued, adding that, historically, no means has existed to directly detect the inflow of the cold fuel.

Now, however, thanks to the background light from the quasar HE 2243-60, Martin and her colleagues have been able to observe distinct signatures near a typical star-forming galaxy that indicate the inflow of gas feeding the galaxy. In this scenario, gas is drawn into a galaxy and then circles around it, rotating with it before falling in. Although some evidence of such accretion had been observed in galaxies before, the motion of the gas and its other properties had not been fully explored until now.

The background quasar is, by chance, perfectly well positioned for this study. "This kind of alignment is very rare, but was critical for this study," explained first author

Bouché, who is now with the Research Institute in Astrophysics and Planetology in Toulouse, France.

The astronomers used two instruments known as SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) and UVES (Ultraviolet and Visual Echelle Spectrograph), both of which are mounted on European Southern Observatory's Very Large Telescope at the Paranal Observatory in northern Chile. The new observations showed both how the galaxy itself was rotating and revealed the composition and motion of the gas outside the galaxy.

The result is the discovery of how an active star-forming galaxy feeds its prodigious growth, according to co-author Michael Murphy, from the Swinburne University of Technology in Australia. "[We've] observed, as directly as possible, the feeding process for forming huge numbers of stars very quickly 11 billion years ago," he said. The observation also strengthens the argument that low-mass galaxies are formed through these cold streams, which also allow galaxies to prolong their star formation process.

"It is impressive to see in the data the telltale signatures of this infalling gas matching those expected in numerical simulations," said Bouché.

Other members of the research team include Glenn G. Kacprzak,

also of Swinburne University and an Australian Research Council Super Science Fellow; Céline Péroux of Aix Marseille University, France; Thierry Contini of University Paul Sabatier of Toulouse, France; and Miroslava Dessauges-Zavadsky of the Observatory of Geneva, Switzerland.

Crystal Martin
Astronomy and Astrophysics
European Southern Observatory

Topics: