• ucsantabarbara twitter avatar
    ICYMI: #UCSB has begun its planned ecological restoration of a former golf course in Goleta. Details:… https://t.co/zN4ZDLyayK
    4 hours 21 min ago
  • ArtsandLectures twitter avatar
    Enjoy an entertaining mix of delightful cinema with #KidFlixMix, today at 3PM at UCSB Campbell Hall!… https://t.co/ijXZxyCEOL
    6 hours 32 sec ago
  • UCSBgauchos twitter avatar
    Softball: Gauchos Split Final Road Games at Hawai'i https://t.co/CpEDdmmhVc
    14 hours 25 min ago
  • UCSBgauchos twitter avatar
    Gauchos are live on @ESPN3 ! WATCH >>> https://t.co/io6ZzYs9Hg https://t.co/BEO8wTxv62
    19 hours 32 min ago
  • ucsantabarbara twitter avatar
    Congrats to Leah Foltz for winning the #UCSB Grad Slam! Now she moves onto the UC-wide competition in SF on May 4th! https://t.co/kVqCtOTWb7
    1 day 2 hours ago
  • UCSBgauchos twitter avatar
    Former @UCSB_Baseball LHP Dom Mazza speaks with his hometown paper after throwing a perfecto this week! https://t.co/GPc3B3qL9g
    1 day 2 hours ago
  • ArtsandLectures twitter avatar
    Watch pianist #MurrayPerahia's breathtaking and imaginative performance, tonight at 7PM at UCSB Campbell Hall!… https://t.co/M83EeA6Y53
    1 day 5 hours ago
  • UCSBgauchos twitter avatar
    Softball: Hawai'i Tops UCSB 5-1 in Gauchos' Final Road Series Opener https://t.co/ejf0MWM1g0
    1 day 12 hours ago
  • UCSBgauchos twitter avatar
    Gauchos Sweep Past UCI 4-0 https://t.co/WFwbxDV8eA
    1 day 15 hours ago
  • ucsantabarbara twitter avatar
    We're happy to see you back, alumni! Don't miss the great events we have this weekend. #AllGauchoReunion… https://t.co/Sbz4iirr7i
    1 day 19 hours ago
  • UCSBgauchos twitter avatar
    Women's Tennis: Cal Poly 0, UC Santa Barb. 4 (Final) No.2 UCSB blanks No.7 Cal Poly in Big West Quarterfinal 4-0 https://t.co/m4kdACQFo5
    1 day 19 hours ago
  • UCSBgauchos twitter avatar
    .@UCSB_Baseball vs. UC Riverside on @ESPN3 is live now! Watch here >>> https://t.co/QJMvNLa0mQ
    1 day 19 hours ago
  • UCSBgauchos twitter avatar
    WWP: Defending Big West Champs Defeated by No. 12 LBSU in Another Overtime Match https://t.co/XIO3RJdo9p
    1 day 19 hours ago
  • UCSBgauchos twitter avatar
    Top-Seeded UCSB Set to Host Big West Golf Championship at Sandpiper GC https://t.co/SyXPKB2Ur5
    1 day 21 hours ago
  • UCSBLibrary twitter avatar
    RT @ForestSways: CEMA poster preservation for primary source research. #Chicanohertiage @Marikhasmanyan @UCSBLibrary #sca17 https://t.co/M…
    1 day 23 hours ago

Simple Math may Solve Longstanding Problem of Parasite Energetics

Tuesday, July 2, 2013 - 17:00
Santa Barbara, CA

3047-1.jpg

Hymenolepsis diminuta, more commonly known as the rat tapeworm

Hymenolepsis diminuta, more commonly known as the rat tapeworm

Photo Credit: 

Todd Huspeni

Feeling faint from the flu? Is your cold causing you to collapse? Your infection is the most likely cause, and, according to a new study by UC Santa Barbara research scientist Ryan Hechinger, it may be possible to know just how much energy your bugs are taking from you. His findings are published in a recent issue of The American Naturalist.

"When we get sick –– particularly with infectious agents –– we often talk about having our ‘energy drained,' or of ‘having low energy,'" said Hechinger, an associate research biologist at UCSB's Marine Science Institute and Department of Ecology, Evolution and Marine Biology. "This common language highlights that energy may provide a useful currency to investigate how infectious agents, or parasites, impact their hosts."

Unfortunately, he added, there has been little research on the energetics of parasites and their hosts, largely because scientists have been stymied by the difficulty of measuring the energetics of parasites living inside their hosts.

However, it may be possible to predict how much energy parasites drain from their hosts, according to Hechinger, simply by modifying equations from the metabolic theory of ecology –– a theory that describes the relationships between metabolic rates, body temperatures, and sizes of organisms. Typically applied to animals and plants living in ecosystems, Hechinger said these equations could be used for parasites living in host bodies. Further, because a host's body is like an ecosystem for its parasites, applying the metabolic theory of ecology can provide unique ways to better understand the ecology of animals in larger ecosystems.

"We pretty much only need information on the host and parasite body sizes and temperatures –– which is easy information to get –– and we're good to go," Hechinger said. "With that info, we can go straight to energetics because we can estimate parasite and host metabolic rates –– how many calories they burn."

Initial tests supported the new theory. Hechinger analyzed data for parasitic worms in rats, including tapeworms, and for parasitic round worms infecting a wide range of mammal species. "The most important finding might be that there is a limit to how many worms you can cram into a host, and that limit is best reflected, not by the space available inside the host or by parasite biomass, but by host and parasite metabolic rates –– by energy," he said.

Energy as a currency is important, and, according to Hechinger, a more universal currency to describe parasitism than is the typical use of numbers. Using energy and the new equations might uncover universal rules about the nature of parasitism. "It may help us to not only measure, but also predict the influence of parasites in hosts and even entire ecosystems," Hechinger said. "This is especially important because ecology is increasingly documenting that parasites are major players in ecosystems –– just as important as predators and competitors."

"These equations may be particularly helpful when we deal with the real, complicated world where many types of parasites live within hosts, when it would be impossible, for instance, to directly measure the metabolic rates of each species," he said.

Ecological Parasitology

Topics: