• ucsantabarbara twitter avatar
    Gauchos know where to get textbooks and scantrons, but what about food? Find out here! https://t.co/dbjaYz25Cd… https://t.co/nrRRU0GhyW
    49 min 43 sec ago
  • ArtsandLectures twitter avatar
    You ever feel like you have too many questions? @MairaKalman explores why not knowing can be good today at 7:30PM!… https://t.co/ER4KLPk7mg
    52 min 31 sec ago
  • ArtsandLectures twitter avatar
    RT @SBIndpndnt: Maira Kalman’s Illustrated Life: Legendary Author/Illustrator Extols the Beauty of Not Knowing https://t.co/EFX768LO2w http…
    10 hours 32 min ago
  • ArtsandLectures twitter avatar
    RT @StationCDRKelly: Going around the track @IMS at 180mph in an @IRE2seater seems faster than the #SpaceShuttle! No kidding! https://t.co/…
    14 hours 24 min ago
  • UCSBgauchos twitter avatar
    Women's Soccer: UC Santa Barb. 0, UC Irvine 1 (Final) Gauchos Lose Tough One at UC Irvine, 1-0 https://t.co/7iPDd8IfSb
    15 hours 47 min ago
  • UCSBgauchos twitter avatar
    RT @ucsbtennis: Congrats to Morgan and Simon on taking the doubles title at the Southwest Regional! NYC here we come! #GoGauchos #regionalc
    16 hours 5 min ago
  • UCSBgauchos twitter avatar
    Will the Gauchos climb in rankings after upsetting No. 5 Stanford 7-6? https://t.co/GhYPn3tee4
    20 hours 28 min ago
  • brenucsb twitter avatar
    Attention environmental problem solvers! #BrenUCSB is accepting MESM and PhD applications for Fall 2017. Learn more https://t.co/G4NB6n0Ne4
    21 hours 51 min ago
  • ucsantabarbara twitter avatar
    Congrats to #UCSB physicist Andrea Young for receiving a 2016 Fellowship to pursue his studies! https://t.co/U0VRrjpcVo
    22 hours 21 min ago
  • UCSBgauchos twitter avatar
    WVB: Gauchos Bounce Back, Defeat CSUN 3-1 on Alumni Night https://t.co/FojzbAmgtC
    1 day 8 hours ago
  • UCSBgauchos twitter avatar
    .@UCSBMensSoccer has to settle for draw over rival Cal Poly in front of season-high crowd. RECAP >>>… https://t.co/SWgs9zjRSJ
    1 day 9 hours ago
  • UCSBgauchos twitter avatar
    Attention UCSB fans, https://t.co/DWr6IUf6ek have live stream of postgame presser w/ Tim Vom Steeg. Listen here >>> https://t.co/ERE7yxUmyI
    1 day 11 hours ago
  • UCSBgauchos twitter avatar
    No. 7 UCSB Deal Thrilling Upset to No. 5 Stanford 7-6 https://t.co/cqiTDXJPRn
    1 day 14 hours ago
  • AS_UCSB twitter avatar
    Good luck to @UCSBMensSoccer today taking on the bad guys Cal Poly. Let's get it! #GauchoStrong
    1 day 15 hours ago
  • brenucsb twitter avatar
    What's it like to study at #BrenUCSB? See these students' stories to find out: https://t.co/A0sE88SEwV
    1 day 21 hours ago

UCSB Scientists Find Resilience in Shelled Plants Exposed to Ocean Acidification

Friday, April 12, 2013 - 17:00
Santa Barbara, CA


Cells of the coccolithophore species Emiliania huxleyi strain NZEH under present-day, left, and future high, right, carbon dioxide conditions.

Cells of the coccolithophore species Emiliania huxleyi strain NZEH under present-day, left, and future high, right, carbon dioxide conditions.


A sample of an Emiliania huxleyi NZEH culture.


UCSB Professor Debora Iglesias-Rodriguez in the lab.

Marine scientists have long understood the detrimental effect of fossil fuel emissions on marine ecosystems. But a group led by a UC Santa Barbara professor has found a point of resilience in a microscopic shelled plant with a massive environmental impact, which suggests the future of ocean life may not be so bleak.

As fossil fuel emissions increase, so does the amount of carbon dioxide oceans absorb and dissolve, lowering their pH levels. "As pH declines, there is this concern that marine species that have shells may start dissolving or may have more difficulty making calcium carbonate, the chalky substance that they use to build shells," said Debora Iglesias-Rodriguez, a professor in UCSB's Department of Ecology, Evolution and Marine Biology.

Iglesias-Rodriguez and postdoctoral researcher Bethan Jones, who is now at Rutgers University, led a large-scale study on the effects of ocean acidification on these tiny plants that can only be seen under the microscope. Their research, funded by the European Project on Ocean Acidification, is published in the journal PLoS ONE and breaks with traditional notions about the vitality of calcifiers, or creatures that make shells, in future ocean conditions.

"The story years ago was that ocean acidification was going to be bad, really bad for calcifiers," said Iglesias-Rodriguez, whose team discovered that one species of the tiny single celled marine coccolithophore, Emiliania huxleyi, actually had bigger shells in high carbon dioxide seawater conditions. While the team acknowledges that calcification tends to decline with acidification, "we now know that there are variable responses in sea corals, in sea urchins, in all shelled organisms that we find in the sea."

These E. huxleyi are a large army of ocean-regulating shell producers that create oxygen as they process carbon by photosynthesis and fortify the ocean food chain. As one of the Earth's main vaults for environmentally harmful carbon emissions, their survival affects organisms inside and outside the marine system. However, as increasing levels of atmospheric carbon dioxide causes seawater to slide down the pH scale toward acidic levels, this environment could become less hospitable.




The UCSB study incorporated an approach known as shotgun proteomics to uncover how E. huxleyi's biochemistry could change in future high carbon dioxide conditions, which were set at four times the current levels for the study. This approach casts a wider investigative net that looks at all changes and influences in the environment as opposed to looking at individual processes like photosynthesis.


Shotgun proteomics examines the type, abundance, and alterations in proteins to understand how a cell's machinery is conditioned by ocean acidification. "There is no perfect approach," said Iglesias-Rodriguez. "They all have their caveats, but we think that this is a way of extracting a lot of information from this system."

To mirror natural ocean conditions, the team used over half a ton of seawater to grow the E. huxleyi and bubbled in carbon dioxide to recreate both present day and high future carbon levels. It took more than six months for the team to grow enough plants to accumulate and analyze sufficient proteins.

The team found that E. huxleyi cells exposed to higher carbon dioxide conditions were larger and contained more shell than those grown in current conditions. However, they also found that these larger cells grow slower than those under current carbon dioxide conditions. Aside from slower growth, the higher carbon dioxide levels did not seem to affect the cells even at the biochemical level, as measured by the shotgun proteomic approach.

"The E. huxleyi increased the amount of calcite they had because they kept calcifying but slowed down division rates," said Iglesias-Rodriguez. "You get fewer cells but they look as healthy as those under current ocean conditions, so the shells are not simply dissolving away."

The team stresses that while representatives of this species seem to have biochemical mechanisms to tolerate even very high levels of carbon dioxide, slower growth could become problematic. If other species grow faster, E. huxleyi could be outnumbered in some areas.

"The cells in this experiment seemed to tolerate future ocean conditions," said Jones. "However, what will happen to this species in the future is still an open question. Perhaps the grow-slow outcome may end up being their downfall as other species could simply outgrow and replace them."

Debora Iglesias-Rodriguez
PloS One