• UCSBgauchos twitter avatar
    Softball: UCSB Closes Out Mary Nutter Classic With Losses to No. 8 Washington, No. 21 Arizona State https://t.co/F5JGYXZ9Ty
    4 hours 9 min ago
  • UCSBgauchos twitter avatar
    WWP: Gauchos Defeat No. 16 UCSD in Final Game of Barbara Kalbus Invitational https://t.co/ieJb9ZsJIq
    4 hours 10 min ago
  • UCSBgauchos twitter avatar
    .@UCSB_Baseball walks off in wild series finale, clinches sweep of Tulane! RECAP >>> https://t.co/Q4akiOPaVh https://t.co/6pWsFLhNmf
    6 hours 40 min ago
  • ArtsandLectures twitter avatar
    Celebrate the traditions of the gaucho with Argentina's #CheMalambo on Sunday, Apr 23 at 7PM at UCSB Campbell Hall.… https://t.co/z7Qvi0p9UV
    15 hours 1 min ago
  • ucsantabarbara twitter avatar
    #UCSB professor Luyendyk never intended ‘Zealandia’ to be a new continent's name. https://t.co/aB4RRpsEUj
    16 hours 9 min ago
  • UCSBgauchos twitter avatar
    Softball: Altmeyer Smashes Two Homers, Including Walk-Off Winner in 6-5 Win Over No. 20 Missouri https://t.co/Upedr26iud
    1 day 54 min ago
  • UCSBgauchos twitter avatar
    Jacob Delson had 34 kills, most by UCSB MVB player since 2010, but Gauchos drop tight five-setter at UCI. RECAP >>>… https://t.co/q5KGaJXpXe
    1 day 3 hours ago
  • UCSBgauchos twitter avatar
    Women's Tennis: UC Santa Barb. 0, Washington 7 (Final) UCSB Falls to 34th-ranked Washington, 0-7 https://t.co/bERvf7q21G
    1 day 4 hours ago
  • UCSBgauchos twitter avatar
    WWP: Gauchos Split Games on Day Two of Barbara Kalbus Invitational, Face No. 16 UCSD Tomorrow https://t.co/C2cigLAaAg
    1 day 5 hours ago
  • UCSBgauchos twitter avatar
    WBB: UCSB Drops Decision At #BWCWBB Leading UC Davis 70-61 To Close Regular Season Road Campaign https://t.co/Bj1F1AtnZM
    1 day 7 hours ago
  • UCSBgauchos twitter avatar
    .@UCSB_Baseball's offense explodes, Cohen goes yard twice in 14-1 rout of Tulane! RECAP >>> https://t.co/8weh6VX0IB https://t.co/2IvFPM1wKS
    1 day 7 hours ago
  • ucsantabarbara twitter avatar
    From theory to practice, this week's #GauchoCourse prepares soon-to-be professors for the real world. https://t.co/DAj0nUIwAw
    1 day 16 hours ago
  • UCSBgauchos twitter avatar
    MVB: Gauchos snap 7 match losing streak with emphatic sweep of UCSD on Friday night. RECAP >>>… https://t.co/Cee1KbeXOh
    2 days 2 hours ago
  • UCSBgauchos twitter avatar
    Women's Tennis: UC Santa Barb. 2, Oregon 5 (Final)
    2 days 5 hours ago
  • UCSBgauchos twitter avatar
    WBB: Gauchos Face First-Place UC Davis Looking to End Two-Game Skid https://t.co/wRGTYxtxDC
    2 days 6 hours ago

Protein Knots Gain New Evolutionary Significance

Monday, June 4, 2012 - 17:00
Santa Barbara, CA

2743-1.jpg

UCSB Mathematics professor Ken Millett

UCSB Mathematics professor Ken Millett

imagetn.aspx_.jpg

Full description below. †

A new study suggests that protein knots, a structure whose formation remains a mystery, may have specific functional advantages that depend on the nature of the protein's architecture.

"The presence of a knotted or slipknotted structure in a protein is relatively rare but really is very interesting," said Kenneth Millett, a professor of mathematics at UC Santa Barbara and a co-author of the paper, "Conservation of complex knotting and slipknotting patterns in proteins," published in the Proceedings of the National Academy of Sciences.

Relatively little is known about protein folding, the process by which a polypeptide chain with a specific sequence of amino acid chains forms the three-dimensional structures –– their "native states" –– required to become functional. How this process reproducibly achieves the required structure is the subject of intensive study. Even harder is understanding how this is accomplished for knotted proteins, where the chain loops around itself in entanglements of varying complexity; or the even rarer slipknotted proteins, where a loop is bound by another segment of the protein chain, similar to a shoelace bow.

What intrigued the scientists about the protein knots is that the folding process resulting in the formation of knots is intrinsically more difficult than the process producing unknotted proteins. The protein has to avoid not only energetic traps but also topological barriers. If an amino acid chain takes too much time to find its native state or if it is stuck in a misfolded or partially unfolded state, the result may be a useless protein or one that produces harm by causing protein aggregation which is known to cause neurodegenerative disorders.

"From an evolutionary point of view, knotting might seem unlikely to occur but, in fact, it does occur," said Millett, who, along with co-first authors Joanna Sulkowska from UC San Diego and Eric J. Rawdon from the University of Saint Thomas and with Jose N. Onuchic from Rice University and Andrzej Stasiak from the University of Lausanne, examined, analyzed, and classified 74,223 protein structures submitted to the Protein Data Bank for the location and formation of knots. Millett worked on the development of the mathematical theory and the computer implementation needed to identify the location and type of knots in the proteins studied in the paper.

What they found was that protein knots and slipknots, instead of being discarded through the process of evolution, are often strongly conserved. This suggests that, despite their reduced efficiency of folding, the knots are somehow advantageous and important to the function of the protein.

Additionally, the researchers found that the location of these knots and slipknots is highly conserved, marked by points of flexibility –– "hinges" –– in the chain that may have properties necessary for more efficient folding.

Knots and slipknots could contribute to the stability of the protein, as shown by the similar slipknot loops observed in several families of proteins that form transmembrane channels –– the ducts through membranes of a cell, that allow certain materials to pass through. The slipknot, according to the authors, seems to strap together several transmembrane structures giving stability and forming the channel needed to allow passage through cell membranes.

The researchers will continue their study of the little-understood process of protein folding and knotting, said Millett.

"These knots may help to identify features that turn out to be important, and aspects of the structure that are more generalizable. We need to clearly understand how these things come to be, what are the implications of their structure, and how might one be able to somehow guide them," said Millett.

 

 


 

 

[RETURN TO TOP]  

 

 

Bottom image: Molecular structures and matrix presentation for ubiquitin C-terminal hydrolases from (A) human, (B) yeast, and (C) P. falciparum plasmodium cells form the same knotting motif.

 

Topics: