• UCSBgauchos twitter avatar
    Softball: UCSB Closes Out Mary Nutter Classic With Losses to No. 8 Washington, No. 21 Arizona State https://t.co/F5JGYXZ9Ty
    3 hours 54 min ago
  • UCSBgauchos twitter avatar
    WWP: Gauchos Defeat No. 16 UCSD in Final Game of Barbara Kalbus Invitational https://t.co/ieJb9ZsJIq
    3 hours 55 min ago
  • UCSBgauchos twitter avatar
    .@UCSB_Baseball walks off in wild series finale, clinches sweep of Tulane! RECAP >>> https://t.co/Q4akiOPaVh https://t.co/6pWsFLhNmf
    6 hours 25 min ago
  • ArtsandLectures twitter avatar
    Celebrate the traditions of the gaucho with Argentina's #CheMalambo on Sunday, Apr 23 at 7PM at UCSB Campbell Hall.… https://t.co/z7Qvi0p9UV
    14 hours 46 min ago
  • ucsantabarbara twitter avatar
    #UCSB professor Luyendyk never intended ‘Zealandia’ to be a new continent's name. https://t.co/aB4RRpsEUj
    15 hours 54 min ago
  • UCSBgauchos twitter avatar
    Softball: Altmeyer Smashes Two Homers, Including Walk-Off Winner in 6-5 Win Over No. 20 Missouri https://t.co/Upedr26iud
    1 day 39 min ago
  • UCSBgauchos twitter avatar
    Jacob Delson had 34 kills, most by UCSB MVB player since 2010, but Gauchos drop tight five-setter at UCI. RECAP >>>… https://t.co/q5KGaJXpXe
    1 day 2 hours ago
  • UCSBgauchos twitter avatar
    Women's Tennis: UC Santa Barb. 0, Washington 7 (Final) UCSB Falls to 34th-ranked Washington, 0-7 https://t.co/bERvf7q21G
    1 day 3 hours ago
  • UCSBgauchos twitter avatar
    WWP: Gauchos Split Games on Day Two of Barbara Kalbus Invitational, Face No. 16 UCSD Tomorrow https://t.co/C2cigLAaAg
    1 day 5 hours ago
  • UCSBgauchos twitter avatar
    WBB: UCSB Drops Decision At #BWCWBB Leading UC Davis 70-61 To Close Regular Season Road Campaign https://t.co/Bj1F1AtnZM
    1 day 7 hours ago
  • UCSBgauchos twitter avatar
    .@UCSB_Baseball's offense explodes, Cohen goes yard twice in 14-1 rout of Tulane! RECAP >>> https://t.co/8weh6VX0IB https://t.co/2IvFPM1wKS
    1 day 7 hours ago
  • ucsantabarbara twitter avatar
    From theory to practice, this week's #GauchoCourse prepares soon-to-be professors for the real world. https://t.co/DAj0nUIwAw
    1 day 16 hours ago
  • UCSBgauchos twitter avatar
    MVB: Gauchos snap 7 match losing streak with emphatic sweep of UCSD on Friday night. RECAP >>>… https://t.co/Cee1KbeXOh
    2 days 2 hours ago
  • UCSBgauchos twitter avatar
    Women's Tennis: UC Santa Barb. 2, Oregon 5 (Final)
    2 days 4 hours ago
  • UCSBgauchos twitter avatar
    WBB: Gauchos Face First-Place UC Davis Looking to End Two-Game Skid https://t.co/wRGTYxtxDC
    2 days 6 hours ago

Emerging Theoretical Framework May Guide Researchers Through the Complex World of Multiblock Polymers

Thursday, April 26, 2012 - 17:00
Santa Barbara, CA

imagetn.aspx_.jpg

Professor of materials Glenn Fredrickson

imagetn.aspx_.jpg

Kris Delaney Project Scientist

Thanks to advances in polymer chemistry and a wide variety of monomer constituents to choose from, the world of multiblock polymers is wide open. These polymers can result in an astonishing array of materials, customizable to almost any specification. However, the flood of options could be overwhelming, without a theoretical framework to guide research. UC Santa Barbara scientists Glenn Fredrickson and Kris Delaney address that issue in their paper, "Multiblock Polymers: Panacea or Pandora's Box?" The paper appears in the latest edition of the journal Science.

Polymers are large molecules comprised of repeating sequences of monomers. When more than one monomer type is present and the dissimilar monomers are organized and chemically bound into "blocks," the resulting multiblock polymers can serve as the basis for a multitude of materials, to be used in applications as diverse as tennis shoes and solar cells. Since the genesis of polymer science in the 1950's, when scientists had only limited numbers of monomers, and, methods to choose from in creating multiblock polymers, the field has expanded. Scientists may now create materials using monomers from a variety of sources, from petroleum to renewable feedstocks such as sugar or cellulose.

"The Pandora's box is that you have so many monomers that you can put together and in so many block sequences," said Fredrickson, a professor of chemical engineering, explaining that the properties will vary according to sequence and by virtue of the interactions among the blocks. Because multiblock copolymers can "self-assemble" into nanometer-sized domains, these materials can exhibit remarkable combinations of properties, such as soft, strong, and elastic –– as in tennis shoe soles or skateboard wheels.

For higher-tech applications, the researchers are currently partnering with the company Intel to develop multiblock polymers that will enable patterning of microelectronic devices at finer scales and lower cost.

The problem, say Fredrickson and Delaney, a project scientist in the Department of Engineering, has become the sheer number of possible combinations for these monomers. There are now so many, that choosing what multiblock polymer to make –– and what monomers to make it from –– has become an issue.

"It is a counting problem," said Fredrickson, referring to the potential for millions of different polymers that could be created with today's chemistry, a number that increases by leaps and bounds for every new block and monomer species added to the selection.

The researchers, who also include scientists from the University of Minnesota and the University of Texas, suggest an approach that addresses materials performance needs by combining predictive computer simulation methods with advanced synthetic and structural characterization tools.

"Our simulation methods for predicting the self-assembled structures of multiblock polymers are quite advanced, and we are getting better at relating those nano-structures to the properties of the material," said Fredrickson. "Multiblock polymers are extremely versatile –– there is enormous latitude of design freedom, and it's very promising in terms of developing materials with truly unique properties."

 

 


 

 

[RETURN TO TOP]  

 

 

Top image: The variety of monomers that can be used to construct multiblock polymers can yield a multitude of materials with different properties.
Credit: Peter Allen

 

UC Santa Barbara College of Engineering