• UCSBgauchos twitter avatar
    Softball: Hawai'i Tops UCSB 5-1 in Gauchos' Final Road Series Opener https://t.co/ejf0MWM1g0
    3 hours 56 min ago
  • UCSBgauchos twitter avatar
    Gauchos Sweep Past UCI 4-0 https://t.co/WFwbxDV8eA
    6 hours 33 min ago
  • ucsantabarbara twitter avatar
    We're happy to see you back, alumni! Don't miss the great events we have this weekend. #AllGauchoReunion… https://t.co/Sbz4iirr7i
    10 hours 10 min ago
  • UCSBgauchos twitter avatar
    Women's Tennis: Cal Poly 0, UC Santa Barb. 4 (Final) No.2 UCSB blanks No.7 Cal Poly in Big West Quarterfinal 4-0 https://t.co/m4kdACQFo5
    10 hours 13 min ago
  • UCSBgauchos twitter avatar
    .@UCSB_Baseball vs. UC Riverside on @ESPN3 is live now! Watch here >>> https://t.co/QJMvNLa0mQ
    10 hours 32 min ago
  • UCSBgauchos twitter avatar
    WWP: Defending Big West Champs Defeated by No. 12 LBSU in Another Overtime Match https://t.co/XIO3RJdo9p
    10 hours 50 min ago
  • UCSBgauchos twitter avatar
    Top-Seeded UCSB Set to Host Big West Golf Championship at Sandpiper GC https://t.co/SyXPKB2Ur5
    12 hours 25 min ago
  • UCSBLibrary twitter avatar
    RT @ForestSways: CEMA poster preservation for primary source research. #Chicanohertiage @Marikhasmanyan @UCSBLibrary #sca17 https://t.co/M…
    14 hours 26 min ago
  • UCSBLibrary twitter avatar
    @AmldavisAnn We're glad you're interested in using, please contact (805) 893-3062 or @library.ucsb.edu">special@library.ucsb.edu for m… https://t.co/fwAVOMoWyB
    14 hours 26 min ago
  • UCSB_GradPost twitter avatar
    CPT F-1 Visa workshop for international students on May 11 https://t.co/l6xZEndRVl #UCSB #ucsbgradpost
    14 hours 42 min ago
  • UCSB_GradPost twitter avatar
    Two open postdoc positions on Verification of Quantum Cryptography https://t.co/ZRA2iro7Ym #UCSB #ucsbgradpost
    14 hours 42 min ago
  • UCSB_GradPost twitter avatar
    Professor Micaela J. Díaz-Sánchez to speak about bomba on May 2 https://t.co/D4g84xVXkD #UCSB #ucsbgradpost
    14 hours 42 min ago
  • ArtsandLectures twitter avatar
    #DavidSedaris talks to the @SBIndpndnt about his new book Theft By Finding: "You might say he’s stolen our hearts."… https://t.co/fR3WFw02CL
    15 hours 37 min ago
  • brenucsb twitter avatar
    Is it possible to have negative GHG emissions? #UK launches national initiative to find negative emissions tech https://t.co/gHHHQHJLf1
    15 hours 39 min ago
  • UCSBengineering twitter avatar
    Photo gallery is up for our 50th Anniversary Alumni Reception! Can't wait to see everyone at 4pm #UCSBCOE50 https://t.co/d7TtlRJ2PM
    16 hours 5 min ago

UCSB Scientists Get Glimpse of How the ‘Code' of Life May Have Emerged by Deciphering Molecular Puzzle

Wednesday, March 23, 2011 - 17:00
Santa Barbara, CA

(Santa Barbara, Calif.) –– A portion of the "code" of life has been unraveled by a UC Santa Barbara graduate student from the town of Jojutla, Mexico.

Annia Rodriguez worked with John Perona, professor in UCSB's Department of Chemistry and Biochemistry, to decipher intramolecular communication within a large RNA-protein enzyme responsible for expressing the genetic code for the amino acid glutamine.

To their surprise, the experiments by Rodriguez captured a partial glimpse of how the genetic coding of life may have emerged. The results of the study are published in the journal Structure, published by CELL.

Life is based on the ability of all living cells to convert the genetic information in DNA, into the specific sequences of amino acids that make up the proteins that are the cell's workhorses. The key reaction in this decoding process is the attachment of a particular amino acid to one end of a small RNA molecule known as a transfer RNA. The enzyme that catalyzes this amino acid-RNA attachment is the aminoacyl-tRNA synthetase.

Rodriguez performed many laborious experiments in which she removed portions of the aminoacyl-tRNA synthetase that interact with the anticodon stem of the transfer RNA, far from the part of the enzyme that binds the amino acid. Using a biochemical approach known as rapid chemical quench kinetics, Rodriguez discovered that when she made these changes to the enzyme, the binding of the amino acid to the protein was strengthened, even though the amino acid binds far away from the positions where the changes were made.

"It is totally counterintuitive," said Perona. "Imagine if you had a car, and you took out a gear, and the car went faster. Why would you want that gear if it makes your car go slower?"

In all, Rodriguez found that separately removing seven different "gears" from a distant part of the molecule each caused the amino acid to bind more tightly to the aminoacyl-tRNA synthetase. Perona explained that this provides the first systematic analysis demonstrating long-range communication in an enzyme that depends on RNA for its function.

"So what we think is going on is that these enzyme-RNA interactions far from the amino acid binding site evolved together with the needs of the cell to respond to subtle cues from its environment – especially in terms of how much amino acid is available," said Perona. "It makes sense in terms of evolution."

Rodriguez is the first in her family to pursue a Ph.D., which she will complete this year. Now 28 years old, she began her career as a nurse in Cuernavaca, Mexico. Then she went on to obtain a B.S. in biochemical engineering at the Instituto Tecnológico de Zacatepec.

Graduation from her undergraduate program called for work at a research institution and she chose UCSB. Upon graduation, Rodriguez was offered a prestigious five-year scholarship with Mexico's Consejo Nacional de Ciencia y Technología (CONACYT) to continue her studies at UCSB.

Although her current research is not focused specifically on human health, Rodriguez said: "My interest in biochemistry started because I wanted to know the mechanisms by which drugs and medications worked inside the human body. I wanted to learn not just the signs and symptoms of disease, but how diseases are developed in a molecular level."

 

 


 

 

[RETURN TO TOP]  

 

 

Top photo: Crystal structure of glutaminyl tRNA synthetase (GlnRS, green) in complex with its substrate tRNA^Gln (yellow). Right panel: Color-coded residues depict favorable (blue) and unfavorable (red) effects on the free energy of glutamine binding from mutation at this position. Left panel: Effects of mutation on the ability of GlnRS to catalyze amino acid attachment to the tRNA. In this case all effects are unfavorable.
Credit: Annia Rodriguez/ John Perona / UCSB

 

 

†† Bottom photo: Annia Rodriguez and John Perona in front of the Rapid Quench Flow Machine used in the experiments.
Credit: George Foulsham, Office of Public Affairs, UCSB

 

John Perona
CONACYT