• UCSBgauchos twitter avatar
    .@UCSB_Volleyball topples UC Davis Tuesday for first road W of the year. Chos host LBSU, CSUN this weekend! RECAP >… https://t.co/tHebB9fRzQ
    2 hours 1 min ago
  • UCSBgauchos twitter avatar
    UCSB Travels to Sac State Wednesday; Hosts UC Davis Saturday as Big West North Race Heats Up https://t.co/uq5R5dgo7T
    7 hours 55 min ago
  • UCSBgauchos twitter avatar
    Gauchos Travel to UC Davis Thursday, Fullerton Sunday for ESPN3 Match https://t.co/pqCYwNlwOy
    8 hours 5 min ago
  • brenucsb twitter avatar
    Third time's the charm! #BrenHall recently became the first building to receive three #LEED Platinum certifications https://t.co/rdrnPjyDwI
    9 hours 6 min ago
  • UCSBgauchos twitter avatar
    Gauchos Finish Close Second at Bill Cullum Invitational https://t.co/DTdH3hnpAW
    9 hours 7 min ago
  • ArtsandLectures twitter avatar
    RT @SantaBarbara: For the first time, the Israel Philharmonic Orchestra performs live at the Arlington Theatre on Nov. 1, presented by @Art
    9 hours 42 min ago
  • UCSB_GradPost twitter avatar
    Improve your communication skills with October 24 workshops https://t.co/EjcNOWPupo #UCSB #ucsbgradpost
    10 hours 22 min ago
  • brenucsb twitter avatar
    The @SWMfellows program at #BrenUCSB trains students to find market-based solutions to #water management problems -… https://t.co/eXgCMe71OY
    11 hours 18 min ago

UCSB Chemists Make Discovery that May Lead to Drug Treatment Possibilities for Alzheimer's, Diabetes, and other Diseases

Thursday, February 10, 2011 - 16:00
Santa Barbara, CA

2427-1.jpg

Michael T. Bowers

Michael T. Bowers

UC Santa Barbara scientists have made a discovery that has the potential for use in the early diagnosis and eventual treatment of plaque-related diseases such as Alzheimer's disease and Type 2 diabetes. Their work is published in a recent issue of Nature Chemistry.

The amyloid diseases are characterized by plaque that aggregates into toxic agents that interact with cellular machinery, explained Michael T. Bowers, lead author and professor in the Department of Chemistry and Biochemistry. Other amyloid diseases include Parkinson's disease, Huntington's disease, and atherosclerosis. Amyloid plaques are protein fibrils that, in the case of Alzheimer's disease, develop prior to the appearance of symptoms.

"The systems we use are model systems, but the results are groundbreaking," said Bowers. He explained that his research provides the first examples of the conversion of randomly assembled aggregates of small peptides into ordered beta sheets that comprise fibrils. Fibrils are the final structural state of the aggregation process.

In the article, Bowers describes how understanding the fundamental forces that relate aggregation, shape, and biochemistry of soluble peptide aggregates is central to developing diagnostic and therapeutic strategies for amyloid diseases.

Bowers and his research team used a method called ion-mobility spectrometry-mass spectrometry (IMS-MS). This method enabled the team to deduce the peptide self-assembly method. They then examined a series of amyloid-forming peptides clipped from larger peptides or proteins associated with disease.

Bowers explained that IMS-MS has the potential to open new avenues for investigating the pathogenic mechanisms of amyloid diseases, their early diagnosis and eventual treatment.

The first author of the paper is Christian Blieholder, a Humbolt Postdoctoral Fellow at UCSB. Thomas Wyttenbach, UCSB associate researcher, is a co-author. Nicholas F. Dupuis, who was a Ph.D. student at UCSB at the time of the research, is also a co-author; he is now a postdoctoral fellow at the University of Colorado.

The Bowers Group