• UCSBgauchos twitter avatar
    Gilbertson Earns Big West Player of the Week Honor https://t.co/P0wmPtDjNT
    5 hours 55 min ago
  • ucsantabarbara twitter avatar
    When secrets are exposed, can life ever be the same? That question is at the heart of @ucsbTD's “Lydia." https://t.co/r1KKTmmB5N
    11 hours 33 min ago
  • ArtsandLectures twitter avatar
    RT @KCRWinSB: Extreme sports, mountain culture & exotic locations are a few highlights of the @BanffMtnFest. Don't miss it! https://t.co/sR…
    11 hours 34 min ago
  • ArtsandLectures twitter avatar
    .@DrSidMukherjee on the powerful documentary Cancer: The Emperor of All Maladies with @kenburns & @katiecouric https://t.co/p7pRHUrhGr
    11 hours 43 min ago
  • ArtsandLectures twitter avatar
    Fearless foodies, we're prepping for @AltonBrownLive with a giveaway! Find out how you can win #AltonBrown swag!… https://t.co/7xWh29cuct
    11 hours 59 min ago
  • UCSBgauchos twitter avatar
    WWP: Gauchos Begin Barbara Kalbus Invitational Against No. 8 Michigan https://t.co/p3U6s9Pswr
    12 hours 13 min ago
  • UCSB_GradPost twitter avatar
    Maria Vazquez on seeing the big picture and grad school life lessons https://t.co/8ghZtxLgvN #UCSB #ucsbgradpost
    13 hours 18 min ago
  • UCSBgauchos twitter avatar
    Gauchos Host Riverside in Final Home Game Thursday https://t.co/FPzQSdg2Ae
    13 hours 39 min ago
  • UCSBengineering twitter avatar
    Cryptographer Stefano Tessaro receives early career recognition from the Alfred P. Sloan Foundation https://t.co/iQi8qUA6uS
    14 hours 3 min ago
  • AS_UCSB twitter avatar
    Eager to make your mark on campus? Pop into our winter recruitment fair to learn how to get involved with your A.S.… https://t.co/Cp0VIE7bEq
    14 hours 24 min ago
  • brenucsb twitter avatar
    RT @CoraKammeyer: So cool to hear @GlobalEcoGuy speak at @brenucsb about the work @calacademy is doing to explore+explain+sustain our awe-i…
    15 hours 52 min ago
  • ArtsandLectures twitter avatar
    @mrjoshz @benshapiro oops, not an A&L event. Daily Nexus says it was put on by UCSB College Republicans: https://t.co/z8KDFjpXTv
    16 hours 31 min ago
  • brenucsb twitter avatar
    .@GlobalEcoGuy: Museums are the most trusted institutions in the nation w/ high approval ratings from Dems & Republicans alike #BrenTalks
    17 hours 28 min ago
  • ArtsandLectures twitter avatar
    Looking forward to another collaboration #theemperorofallmaladies #thegene https://t.co/BEzznCTSdN
    17 hours 31 min ago
  • brenucsb twitter avatar
    @GlobalEcoGuy: Museums serve ~ 1 billion visitors a year, more than all the sports stadiums & theme parks in the nation combined #BrenTalks
    17 hours 31 min ago

Astronomically Large Lenses Measure the Age and Size of the Universe

Monday, March 1, 2010 - 16:00
Santa Barbara, CA

Using entire galaxies as lenses to look at other galaxies, researchers have a newly precise way to measure the size and age of the universe and how rapidly it is expanding, on par with other techniques. The measurement determines a value for the Hubble constant, which indicates the size of the universe, and confirms the age of the universe (within 170 million years) as 13.75 billion years old. The results also confirm the strength of dark energy, responsible for accelerating the expansion of the universe.

These findings, to be published in The Astrophysical Journal in March, are the work of researchers at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at the U.S. Department of Energy's SLAC National Accelerator Laboratory and Stanford University, the University of Bonn, the University of California, Santa Barbara, the University of California, Davis, and the Kapteyn Astronomical Institute in the Netherlands. The researchers used data collected by the NASA/ESA Hubble Space Telescope, and showed the improved precision they provide in combination with the Wilkinson Microwave Anisotropy Probe (WMAP).

UCSB's Tommaso Treu, associate professor of physics, and Matthew Auger, postdoctoral physics scholar, were among the researchers. The team also includes Sherry Suyu and Stefan Hilbert (Bonn), Phil Marshall and Roger Blandford (Stanford), Leon Koopmans (Kapteyn), and Chris Fassnacht (UC Davis).

The team used a technique called gravitational lensing to measure the distances light traveled from a bright, active galaxy to the Earth along different paths. By understanding the time it took to travel along each path and the effective speeds involved, researchers could infer not just how far away the galaxy lies but also the overall scale of the universe and some details of its expansion.

Often, it is difficult for scientists to distinguish between a very bright light far away and a dimmer source lying much closer. A gravitational lens circumvents this problem by providing multiple clues as to the distance light travels. That extra information allows them to determine the size of the universe, often expressed by astrophysicists in terms of a quantity called Hubble's constant.

"We've known for a long time that lensing is capable of making a physical measurement of Hubble's constant," Marshall, a KIPAC Kavli Fellow, said. However, gravitational lensing had never before been used in such a precise way. This measurement provides an equally precise measurement of Hubble's constant as long-established tools such as observation of supernovae and the cosmic microwave background. "Gravitational lensing has come of age as a competitive tool in the astrophysicist's toolkit," Marshall said.

Though researchers do not know when light left its source, they can still compare arrival times. Marshall likens it to four cars taking four different routes between places on opposite sides of a large city. Like automobiles facing traffic snarls, light can encounter delays, too. "The traffic density in a big city is like the mass density in a lens galaxy," Marshall said. "If you take a longer route, it need not lead to a longer delay time. Sometimes the shorter distance is actually slower."

The gravitational lens equations account for all the variables such as distance and density, and provide a better idea of when light left the background galaxy and how far it traveled.

In the past, this method of distance estimation was plagued by errors, but physicists now believe it is comparable with other measurement methods. With this technique, the researchers have come up with a more accurate lensing-based value for Hubble's constant, and a better estimation of the uncertainty in that constant. By both reducing and understanding the size of error in calculations, they can achieve better estimations on the structure of the lens and the size of the universe.

"This result was made possible by combining data from the best observatories in the world: the W.M. Keck Telescope, NASA/ESA's Hubble Space Telescope, and the Very Large Array Telescope," Auger said. Added UCSB's Treu: "We are lucky as UC astronomers to have access to the best telescopes in the world."

There are several factors scientists still need to account for in determining distances with lenses. For example, dust in the lens can skew the results. The Hubble Space Telescope has infrared filters useful for eliminating dust effects. The images also contain information about the number of galaxies lying around the line of vision; these contribute to the lensing effect at a level that needs to be taken into account. Marshall said that several groups are working on extending this research, both by finding new systems and further examining known lenses. Researchers are already aware of more than 20 other astronomical systems suitable for analysis with gravitational lensing.

SLAC Press Release (for Photo)