• AS_UCSB twitter avatar
    RT @UCSBCAB: follow our adventures on snapchat! @ ucsbcab
    1 hour 8 min ago
  • brenucsb twitter avatar
    #BrenUCSB environmental law professor Jim Salzman & others join the @EDC_Action board of directors https://t.co/YyomJ46e1P
    1 hour 26 min ago
  • ucsantabarbara twitter avatar
    #UCSB physicist Joseph Polchinski has won the prestigious 2017 Breakthrough Prize in Fundamental Physics! https://t.co/bzrUrKrKE7
    2 hours 48 min ago
  • ucsantabarbara twitter avatar
    Congrats to #UCSB's Glenn Fredrickson for receiving recognition from the American Institute of Chemical Engineers! https://t.co/R2inUBApih
    15 hours 49 min ago
  • brenucsb twitter avatar
    #BrenUCSB Group Project investigates effects of Mexico's "no-take zones" on food security & ocean health https://t.co/VS2q8eHLGY
    19 hours 18 min ago
  • UCSBgauchos twitter avatar
    AVCA Names Ruddins All-Pacific South Region Honorable Mention https://t.co/LBJOFIyPkm
    21 hours 8 min ago
  • brenucsb twitter avatar
    How could changes in #Arctic resource-sharing behaviors affect #indigenous communities? https://t.co/cEXc8A9nPN via @ScienceDaily
    22 hours 18 min ago
  • UCSBengineering twitter avatar
    UCSB Engineers, we're doing #CoffeeMeCOE tomorrow from 11AM-2PM. Tweet us your study photos using our hashtag and w… https://t.co/Q4HRiuB4mU
    1 day 21 min ago
  • brenucsb twitter avatar
    New management strategies are needed to build #sustainable tuna #fisheries: https://t.co/0aRzp93zNp via @EnvDefenseFund
    1 day 44 min ago
  • AS_UCSB twitter avatar
    AS Study Jam at the Community Resource Building. 970 Embarcadero del Mar - behind Nan Stop. Open 24 hours through finals week! snacks, wifi.
    1 day 46 min ago

Hubble, Sloan Quadruple Number of Known Optical Einstein Rings

Thursday, November 17, 2005 - 16:00
Santa Barbara, CA

UC Santa Barbara physicist Tommaso Treu is part of a small team of astronomers who have combined two powerful astronomical assets, the Sloan Digital Sky Survey and NASA's Hubble Space Telescope, to identify 19 new "gravitationally lensed" galaxies. Among these 19, they have found eight new so-called "Einstein rings," which are perhaps the most elegant manifestation of the lensing phenomenon. Only three such rings had previously been seen in visible light.

An article describing the initial findings of the survey will appear in the February 2006 issue of the Astrophysical Journal.

In gravitational lensing, light from distant galaxies is deflected on its way to Earth by the gravitational field of any massive object that lies in the way. Because of this light bending, the galaxy is distorted into an arc or multiple separate images. When both galaxies are exactly lined up, the light forms a bull's-eye pattern, called an Einstein ring, around the foreground galaxy.

Besides producing odd shapes, gravitational lensing gives astronomers the most direct probe of the distribution of dark matter in elliptical galaxies. Dark matter is an invisible and exotic form of matter that has not yet been directly observed. By searching for dark matter in galaxies, astronomers hope to gain insight into galaxy formation, which must have started around lumpy concentrations of dark matter in the early universe.

The newly discovered lenses come from an ongoing project called the Sloan Lens Survey (SLACS). A team of astronomers, led by Adam Bolton of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and Leon Koopmans of the Kapteyn Astronomical Institute in the Netherlands, selected the candidate lenses from among several hundred thousand optical spectra of elliptical galaxies in the Sloan Digital Sky Survey (SDSS).

The team was looking for clear evidence of emission from galaxies twice as far from Earth and directly behind the closer galaxies. They used Hubble's Advanced Camera for Surveys to snap images of 28 of these candidate lensing galaxies. By studying the arcs and rings produced by 19 of these candidates, the astronomers precisely measured the mass of the foreground galaxies. These new discoveries add significantly to the approximately 100 gravitational lenses previously known.

"Being able to study these and other gravitational lenses as far back in time as several billion years allows us to see directly whether the distribution of invisible and visible mass changes with cosmic time," says Koopmans. "With this information, we can test the commonly held idea that galaxies form from collision and mergers of smaller galaxies."

Treu explained that an additional bonus of the large size of the SDSS database is that scientists can design search criteria so as to find the senses that are most suitable for specific science goals. "Whereas until now we have selected the largest galaxies as our targets, in the next stages of the survey we are targeting smaller lens galaxies. There have been suggestions that the structure of galaxies changes with galaxy size," said Treu. "By identifying these rare objects ‘on demand,' we will soon be able for the first time to test whether this is true."

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. The Space Telescope Science Institute in Baltimore conducts Hubble science operations. The Institute is operated for NASA by the Association of Universities for Research in Astronomy, Inc., Washington. The Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory.

Hubble Images