• UCSBgauchos twitter avatar
    What a way to start off the season! @UCSBMensSoccer tops No.5 Stanford 1-0 Friday. RECAP >>> http://t.co/gPhjHwqFP0 http://t.co/z7Z90RLG5D
    1 hour 7 min ago
  • UCSBgauchos twitter avatar
    The Gauchos start the 2015 season off in style, hold No. 8 Stanford scoreless to win 1-0. @UCSBMensSoccer first win over Stanford since 2004
    2 hours 17 min ago
  • UCSBgauchos twitter avatar
    Stanford trying desperately to get on the board but UCSB's backline can't be beat. Gauchos lead 1-0 with 5 minutes to go
    2 hours 24 min ago
  • UCSBgauchos twitter avatar
    Ahinga Selemani beats his defender to set up Geoffrey Acheampong beautifully in the box, but the lefty's shot goes wide of the post
    2 hours 50 min ago
  • UCSBgauchos twitter avatar
    Stanford with a pair of good chances with just under 30 minutes to go but UCSB still finds a way to keep them off the board and lead 1-0
    2 hours 55 min ago
  • UCSBgauchos twitter avatar
    .@UCSBMensSoccer leading No. 8 Stanford 1-0 at the half thanks to a goal by who else, Nick DePuy. Great first half for the Gauchos
    3 hours 24 min ago
  • UCSBgauchos twitter avatar
    GOAL! Seo-In Kim sends a cross far post and Nick DePuy heads it in to put the Gauchos up 1-0 with 3 minutes left in the half
    3 hours 32 min ago
  • UCSBgauchos twitter avatar
    Women's Soccer: San Jose State 1, UC Santa Barbara 1 (Final - 2OT) UCSB, San Jose State Battle to 1-1 Tie http://t.co/KolrGPE4AY
    3 hours 44 min ago
  • UCSBgauchos twitter avatar
    Big save by Vom Steeg to keep the game scoreless! 25 min left in 1st half @UCSBMensSoccer
    3 hours 56 min ago
  • UCSBgauchos twitter avatar
    Stanford has the advantage in the run of play through 10 minutes but it's still 0-0. @UCSBMensSoccer
    4 hours 5 min ago
  • UCSBgauchos twitter avatar
    WVB: UCSB Opens Season with Back-to-Back Sweeps! #GoGauchos http://t.co/yye1PtugDW
    4 hours 33 min ago
  • UCSBgauchos twitter avatar
    Heres UCSB's starting lineup against Stanford: Vom Steeg, Quezada, Strong, Backus, Jome, Espana, Feucht, Murphy, Acheampong, Selemani, DePuy
    4 hours 33 min ago
  • UCSBgauchos twitter avatar
    Don't miss @UCSBMensSoccer season opener against Stanford. Kickoff in 10 minutes!
    4 hours 41 min ago
  • UCSBgauchos twitter avatar
    @UCSBWomenSoccer ties San Jose St. 1-1 in home season opener behind early goal by Mallory Hromatko
    4 hours 50 min ago
  • UCSBgauchos twitter avatar
    RT @UCSB_Volleyball: Make that two sweeps on opening day! We topped UIW 3-0 and are now 2-0!… https://t.co/iybbM7N1tn
    5 hours 24 min ago

Scientist Probes Marine Iron Particles Uptake Puzzle

Tuesday, September 21, 1999 - 17:00
Santa Barbara, CA

Studying the different mechanisms marine plants and bacteria use to acquire traces of iron from sea water may help explain variations in phytoplankton productivity and increase understanding of the process by which the oceans absorb or release carbon into the atmosphere, a primary

factor in global warming.

This is the focus of work performed by UC Santa Barbara chemist Alison Butler and her research colleagues from the University of Delaware that was described in a paper published late last month in Nature magazine. The article, titled

"Competition among marine phytoplankton for different chelated iron species," outlines possible ways bacteria and other prokaryotes (cells without internal organelles) bind iron in comparison to diatoms and other eukaryotic (cells with organelles) phytoplankton.

"Since iron availability plays a critical role in phytoplankton growth, as well as in many other marine microorganisms---maybe even the entire global carbon cycle---we wanted to know what molecular mechanisms control iron uptake," said Butler. As a bioinorganic chemist, her role was to isolate the iron-carrying molecules from the bacteria, known as siderophores, and determine their structures. This had never been done before for open-ocean bacteria, though siderophores from bacteria living in fish guts and deep-sea mud had been described.

The researchers asked themselves, was there a difference in the type of iron complex used by eukaryotic plankton when compared to that used by prokaryotic bacteria? They analyzed a variety of compounds, including iron pyrrole (porphyrin) complexes. Overall, they found plankton much more efficient at acquiring iron from the porphyrin complexes than was bacteria.

"That was not so surprising," said Butler, "but we still do not know the details of how the plankton got the iron."

Bacteria acquired iron from a variety of siderophoric compounds, some of which they do not produce themselves. "That was surprising," Butler said. "The dogma has been that bacteria can only use their own siderophores, which have a specific uptake process, to capture and assimilate the iron. We are just beginning to understand the molecular basis of these very interesting differences."

Butler, who came to UCSB in 1986, and her research group have explored the discrepancy between iron availability in surface ocean waters and iron requirements of marine bacteria since 1990. By recently joining a National Science Foundation-funded consortium of 22 other scientists from other disciplines---the Princeton-based Center for Environmental BioInorganic Chemistry---she expects to extend her exploration many more years.

After reading this article I feel